Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Rapid Commun Mass Spectrom ; 25(22): 3387-95, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22002691

RESUMO

We describe a new, simple, robust and efficient method based on direct-tissue matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry that enables consistent semi-quantitation of peptide hormones in isolated pancreatic islets from normal and diabetic rodents. Prominent signals were measured that corresponded to all the main peptide hormones present in islet-endocrine cells: (α-cells) glucagon, glicentin-related polypeptide/GRPP; (ß-cells) insulin I, insulin II, C-peptide I, C-peptide II, amylin; (δ-cells) somatostatin-14; and (PP-cells), and pancreatic polypeptide. The signal ratios coincided with known relative hormone abundances. The method demonstrated that severe insulin deficiency is accompanied by elevated levels of all non-ß-cell-hormones in diabetic rat islets, consistent with alleviation of paracrine suppression of hormone production by non-ß-cells. It was also effective in characterizing hormonal phenotype in hemizygous human-amylin transgenic mice that express human and mouse amylin in approx. equimolar quantities. Finally, the method demonstrated utility in basic peptide-hormone discovery by identifying a prominent new Gcg-gene-derived peptide (theoretical monoisotopic molecular weight 3263.5 Da), closely related to but distinct from GRPP, in diabetic islets. This peptide, whose sequence is HAPQDTEENARSFPASQTEPLEDPNQINE in Rattus norvegicus, could be a peptide hormone whose roles in physiology and metabolic disease warrant further investigation. This method provides a powerful new approach that could provide important new insights into the physiology and regulation of peptide hormones in islets and other endocrine tissues. It has potentially wide-ranging applications that encompass endocrinology, pharmacology, phenotypic analysis in genetic models of metabolic disease, and hormone discovery, and could also effectively limit the numbers of animals required for such studies.


Assuntos
Ilhotas Pancreáticas/química , Hormônios Pancreáticos/análise , Análise de Sequência de Proteína/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Diabetes Mellitus Experimental , Glicentina/análise , Glicentina/química , Histocitoquímica , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/análise , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Hormônios Pancreáticos/química , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Ratos , Ratos Wistar , Reprodutibilidade dos Testes , Alinhamento de Sequência
2.
J Clin Periodontol ; 37(3): 241-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20149214

RESUMO

AIM: To identify changes in the salivary proteome associated with active periodontitis. MATERIALS AND METHODS: Quantitative proteomics (two-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis) was used to investigate whole saliva from individuals with severe periodontitis and their proteomic profiles before and after periodontal treatment were compared. RESULTS: A comparison of 128 proteins across all saliva samples identified 15 protein spots with altered abundance. The predominant alteration observed was an increase in the abundance of the S100 proteins S100A8/A9/A6. Of the remaining proteins with altered abundance, haptoglobin, prolactin inducible protein and parotid secretory protein have previously been associated with host defence. CONCLUSION: These results highlight the predominant involvement of S100 proteins in the host response during periodontitis, identify host defence components that have not been linked previously to this disease and suggest new potential biomarkers for monitoring disease activity in periodontitis.


Assuntos
Periodontite/metabolismo , Proteoma/análise , Proteínas S100/análise , Saliva/química , Proteínas e Peptídeos Salivares/análise , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
3.
Physiol Rep ; 3(12)2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26634904

RESUMO

Peptides derived from the glucagon gene Gcg, for example, glucagon and glucagon-like peptide 1 (GLP-1), act as physiological regulators of fuel metabolism and are thus of major interest in the pathogenesis of diseases, such as type-2 diabetes and obesity, and their therapeutic management. Glicentin-related pancreatic polypeptide (GRPP) is a further, 30 amino acid Gcg-derived peptide identified in human, mouse, rat, and pig. However, the potential glucoregulatory function of this peptide is largely unknown. Here, we synthesized rat GRPP (rGRPP) and a closely related peptide, rat GRPP-like peptide (rGRPP-LP), and investigated their actions in the liver and pancreas of adult male rats by employing isolated-perfused organ preparations. Rat GRPP and rGRPP-LP did not affect glucose output from the liver, but both elicited potent inhibition of glucose-stimulated insulin secretion (GSIS) from the rat pancreas. This action is unlikely to be mediated by glucagon or GLP-1 receptors, as rGRPP and rGRPP-LP did not stimulate cyclic adenosine monophosphate (cAMP) production from the glucagon or GLP-1 receptors, nor did they antagonize glucagon- or GLP-1-stimulated cAMP-production at either receptor. GRPP and GRPP-LP may be novel regulators of insulin secretion, acting through an as-yet undefined receptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA