Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 66(1): e0172921, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34780270

RESUMO

Resistance to ß-lactams, the most used antibiotics worldwide, constitutes the major problem for the treatment of bacterial infections. In the nosocomial pathogen Acinetobacter baumannii, ß-lactamase-mediated resistance to the carbapenem family of ß-lactam antibiotics has resulted in the selection and dissemination of multidrug-resistant isolates, which often cause infections characterized by high mortality rates. There is thus an urgent demand for new ß-lactamase-resistant antibiotics that also inhibit their targets, penicillin-binding proteins (PBPs). As some PBPs are indispensable for the biosynthesis of the bacterial cell wall and survival, we evaluated their importance for the growth of A. baumannii by performing gene inactivation studies of d,d-transpeptidase domains of high-molecular-mass (HMM) PBPs individually and in combination with one another. We show that PBP3 is essential for A. baumannii survival, as deletion mutants of this d,d-transpeptidase were not viable. The inactivation of PBP1a resulted in partial cell lysis and retardation of bacterial growth, and these effects were further enhanced by the additional inactivation of PBP2 but not PBP1b. Susceptibility to ß-lactam antibiotics increased 4- to 8-fold for the A. baumannii PBP1a/PBP1b/PBP2 triple mutant and 2- to 4-fold for all remaining mutants. Analysis of the peptidoglycan structure revealed a significant change in the muropeptide composition of the triple mutant and demonstrated that the lack of d,d-transpeptidase activity of PBP1a, PBP1b, and PBP2 is compensated for by an increase in the l,d-transpeptidase-mediated cross-linking activity of LdtJ. Overall, our data showed that in addition to essential PBP3, the simultaneous inhibition of PBP1a and PBP2 or PBPs in combination with LdtJ could represent potential strategies for the design of novel drugs against A. baumannii.


Assuntos
Acinetobacter baumannii , Peptidil Transferases , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/metabolismo , Peptidil Transferases/metabolismo , beta-Lactamas/metabolismo , beta-Lactamas/farmacologia
2.
J Struct Biol ; 211(2): 107544, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32512156

RESUMO

The expression of ß-lactamases is a major mechanism of bacterial resistance to the ß-lactam antibiotics. Four molecular classes of ß-lactamases have been described (A, B, C and D), however until recently the class D enzymes were thought to exist only in Gram-negative bacteria. In the last few years, class D enzymes have been discovered in several species of Gram-positive microorganisms, such as Bacillus and Clostridia, and an investigation of their kinetic and structural properties has begun in earnest. Interestingly, it was observed that some species of Bacillus produce two distinct class D ß-lactamases, one highly active and the other with only basal catalytic activity. Analysis of amino acid sequences of active (BPU-1 from Bacillus pumilus) and inactive (BSU-2 from Bacillus subtilis and BAT-2 from Bacillus atrophaeus) enzymes suggests that presence of three additional amino acid residues in one of the surface loops of inefficient ß-lactamases may be responsible for their severely diminished activity. Our structural and docking studies show that the elongated loop of these enzymes severely restricts binding of substrates. Deletion of the three residues from the loops of BSU-2 and BAT-2 ß-lactamases relieves the steric hindrance and results in a significant increase in the catalytic activity of the enzymes. These data show that this surface loop plays an important role in modulation of the catalytic activity of Bacillus class D ß-lactamases.


Assuntos
Antibacterianos/química , Farmacorresistência Bacteriana/genética , Conformação Proteica , beta-Lactamases/ultraestrutura , Sequência de Aminoácidos/genética , Bacillus pumilus/efeitos dos fármacos , Bacillus pumilus/enzimologia , Bacillus subtilis/enzimologia , Domínio Catalítico/genética , Clostridiaceae/enzimologia , Cristalografia por Raios X , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/ultraestrutura , Humanos , Simulação de Acoplamento Molecular , Propriedades de Superfície , beta-Lactamases/química , beta-Lactamases/genética
3.
J Struct Biol ; 208(3): 107391, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550535

RESUMO

Class D ß-lactamases, enzymes that degrade ß-lactam antibiotics and are widely spread in Gram-negative bacteria, were for a long time not known in Gram-positive organisms. Recently, these enzymes were identified in various non-pathogenic Bacillus species and subsequently in Clostridioides difficile, a major clinical pathogen associated with high morbidity and mortality rates. Comparison of the BPU-1 enzyme from Bacillus pumilus with the CDD-1 and CDD-2 enzymes from C. difficile demonstrated that the latter enzymes have broadened their substrate profile to efficiently hydrolyze the expanded-spectrum methoxyimino cephalosporins, cefotaxime and ceftriaxone. These two antibiotics are major contributors to the development of C. difficile infection, as they suppress sensitive bacterial microflora in the gut but fail to kill the pathogen which is highly resistant to these drugs. To gain insight into the structural features that contribute to the expansion of the substrate profile of CDD enzymes compared to BPU-1, we solved the crystal structures of CDD-1 and its complex with cefotaxime. Comparison of CDD-1 structures with those of class D enzymes from Gram-negative bacteria showed that in the cefotaxime-CDD-1 complex, the antibiotic is bound in a substantially different mode due to structural differences in the enzymes' active sites. We also found that CDD-1 has a uniquely long Ω-loop when compared to all other class D ß-lactamases. This Ω-loop extension allows it to engage in hydrogen bonding with the acylated cefotaxime, thus providing additional stabilizing interactions with the substrate which could be responsible for the high catalytic activity of the enzyme for expanded-spectrum cephalosporins.


Assuntos
Clostridioides difficile/enzimologia , beta-Lactamases/química , beta-Lactamases/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cefotaxima/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Mutação , Conformação Proteica , Especificidade por Substrato , beta-Lactamases/genética
4.
Artigo em Inglês | MEDLINE | ID: mdl-31358584

RESUMO

Carbapenem-hydrolyzing class D carbapenemases (CHDLs) are enzymes that produce resistance to the last-resort carbapenem antibiotics, severely compromising the available therapeutic options for the treatment of life-threatening infections. A broad variety of CHDLs, including OXA-23, OXA-24/40, and OXA-58, circulate in Acinetobacter baumannii, while the OXA-48 CHDL is predominant in Enterobacteriaceae Extensive structural studies of A. baumannii enzymes have provided important information regarding their interactions with carbapenems and significantly contributed to the understanding of the mechanism of their carbapenemase activity. However, the interactions between carbapenems and OXA-48 have not yet been elucidated. We determined the X-ray crystal structures of the acyl-enzyme complexes of OXA-48 with four carbapenems, imipenem, meropenem, ertapenem, and doripenem, and compared them with those of known carbapenem complexes of A. baumannii CHDLs. In the A. baumannii enzymes, acylation by carbapenems triggers significant displacement of one of two conserved hydrophobic surface residues, resulting in the formation of a channel for entry of the deacylating water into the active site. We show that such a channel preexists in apo-OXA-48 and that only minor displacement of the conserved hydrophobic surface residues occurs upon the formation of OXA-48 acyl-enzyme intermediates. We also demonstrate that the extensive hydrophobic interactions that occur between a conserved hydrophobic bridge of the A. baumannii CHDLs and the carbapenem tails are lost in OXA-48 in the absence of an equivalent bridge structure. These data highlight significant differences between the interactions of carbapenems with OXA-48 and those with A. baumannii enzymes and provide important insights into the mechanism of carbapenemase activity of the major Enterobacteriaceae CHDL, OXA-48.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Acinetobacter baumannii/genética , Proteínas de Bactérias/química , Carbapenêmicos/farmacologia , Domínio Catalítico , Doripenem/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Imipenem/farmacologia , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Secundária de Proteína , beta-Lactamases/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-30530607

RESUMO

Class D carbapenemases are enzymes of the utmost clinical importance due to their ability to confer resistance to the last-resort carbapenem antibiotics. We investigated the role of the conserved hydrophobic bridge in the carbapenemase activity of OXA-23, the major carbapenemase of the important pathogen Acinetobacter baumannii We show that substitution of the bridge residue Phe110 affects resistance to meropenem and doripenem and has little effect on MICs of imipenem. The opposite effect was observed upon substitution of the other bridge residue Met221. Complete disruption of the bridge by the F110A/M221A substitution resulted in a significant loss of affinity for doripenem and meropenem and to a lesser extent for imipenem, which is reflected in the reduced MICs of these antibiotics. In the wild-type OXA-23, the pyrrolidine ring of the meropenem tail forms a hydrophobic interaction with Phe110 of the bridge. Similar interactions would ensue with ring-containing doripenem but not with imipenem, which lacks this ring. Our structural studies showed that this interaction with the meropenem tail is missing in the F110A/M221A mutant. These data explain why disruption of the interaction between the enzyme and the carbapenem substrate impacts the affinity and MICs of meropenem and doripenem to a larger degree than those of imipenem. Our structures also show that the bridge directs the acylated carbapenem into a specific tautomeric conformation. However, it is not this conformation but rather the stabilizing interaction between the tail of the antibiotic and the hydrophobic bridge that contributes to the carbapenemase activity of class D ß-lactamases.


Assuntos
Acinetobacter baumannii/genética , Proteínas de Bactérias/metabolismo , Doripenem/química , Imipenem/química , Meropeném/química , beta-Lactamases/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Substituição de Aminoácidos/genética , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Doripenem/farmacologia , Farmacorresistência Bacteriana/genética , Imipenem/farmacologia , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Conformação Proteica , beta-Lactamases/genética
6.
Nat Chem Biol ; 12(1): 9-14, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26551395

RESUMO

Production of ß-lactamases of one of four molecular classes (A, B, C and D) is the major mechanism of bacterial resistance to ß-lactams, the largest class of antibiotics, which have saved countless lives since their inception 70 years ago. Although several hundred efficient class D enzymes have been identified in Gram-negative pathogens over the last four decades, none have been reported in Gram-positive bacteria. Here we demonstrate that efficient class D ß-lactamases capable of hydrolyzing a wide array of ß-lactam substrates are widely disseminated in various species of environmental Gram-positive organisms. Class D enzymes of Gram-positive bacteria have a distinct structural architecture and employ a unique substrate-binding mode that is quite different from that of all currently known class A, C and D ß-lactamases. These enzymes thus constitute a previously unknown reservoir of novel antibiotic-resistance enzymes.


Assuntos
Bactérias Gram-Positivas/enzimologia , beta-Lactamases/química , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Sequência de Aminoácidos , Arginina/química , Arginina/metabolismo , Bacillaceae/enzimologia , Bacillaceae/genética , Cristalografia por Raios X , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Bactérias Gram-Positivas/genética , Hidrólise , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , beta-Lactamases/genética , beta-Lactamas/farmacologia
7.
J Biol Chem ; 291(42): 22196-22206, 2016 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-27590339

RESUMO

Some members of the class A ß-lactamase family are capable of conferring resistance to the last resort antibiotics, carbapenems. A unique structural feature of these clinically important enzymes, collectively referred to as class A carbapenemases, is a disulfide bridge between invariant Cys69 and Cys238 residues. It was proposed that this conserved disulfide bridge is responsible for their carbapenemase activity, but this has not yet been validated. Here we show that disruption of the disulfide bridge in the GES-5 carbapenemase by the C69G substitution results in only minor decreases in the conferred levels of resistance to the carbapenem imipenem and other ß-lactams. Kinetic and circular dichroism experiments with C69G-GES-5 demonstrate that this small drop in antibiotic resistance is due to a decline in the enzyme activity caused by a marginal loss of its thermal stability. The atomic resolution crystal structure of C69G-GES-5 shows that two domains of this disulfide bridge-deficient enzyme are held together by an intensive hydrogen-bonding network. As a result, the protein architecture and imipenem binding mode remain unchanged. In contrast, the corresponding hydrogen-bonding networks in NMCA, SFC-1, and SME-1 carbapenemases are less intensive, and as a consequence, disruption of the disulfide bridge in these enzymes destabilizes them, which causes arrest of bacterial growth. Our results demonstrate that the disulfide bridge is essential for stability but does not play a direct role in the carbapenemase activity of the GES family of ß-lactamases. This would likely apply to all other class A carbapenemases given the high degree of their structural similarity.


Assuntos
Proteínas de Bactérias/química , Dissulfetos/química , Mutação de Sentido Incorreto , beta-Lactamases/química , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Cristalografia por Raios X , Cisteína/química , Domínios Proteicos , beta-Lactamases/genética
8.
EMBO J ; 32(22): 2950-62, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24097060

RESUMO

Chromosome partitioning in Escherichia coli is assisted by two interacting proteins, topoisomerase (topo) IV and MukB. MukB stimulates the relaxation of negative supercoils by topo IV; to understand the mechanism of their action and to define this functional interplay, we determined the crystal structure of a minimal MukB-topo IV complex to 2.3 Å resolution. The structure shows that the so-called 'hinge' region of MukB forms a heterotetrameric assembly with a C-terminal DNA binding domain (CTD) on topo IV's ParC subunit. Biochemical studies show that the hinge stimulates topo IV by competing for a site on the CTD that normally represses activity on negatively supercoiled DNA, while complementation tests using mutants implicated in the interaction reveal that the cellular dependency on topo IV derives from a joint need for both strand passage and MukB binding. Interestingly, the configuration of the MukB·topo IV complex sterically disfavours intradimeric interactions, indicating that the proteins may form oligomeric arrays with one another, and suggesting a framework by which MukB and topo IV may collaborate during daughter chromosome disentanglement.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Topoisomerase IV/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Cromossômicas não Histona/química , DNA Topoisomerase IV/química , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica
9.
Biochemistry ; 54(2): 588-97, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25485972

RESUMO

Carbapenems are the last resort antibiotics for treatment of life-threatening infections. The GES ß-lactamases are important contributors to carbapenem resistance in clinical bacterial pathogens. A single amino acid difference at position 170 of the GES-1, GES-2, and GES-5 enzymes is responsible for the expansion of their substrate profile to include carbapenem antibiotics. This highlights the increasing need to understand the mechanisms by which the GES ß-lactamases function to aid in development of novel therapeutics. We demonstrate that the catalytic efficiency of the enzymes with carbapenems meropenem, ertapenem, and doripenem progressively increases (100-fold) from GES-1 to -5, mainly due to an increase in the rate of acylation. The data reveal that while acylation is rate limiting for GES-1 and GES-2 for all three carbapenems, acylation and deacylation are indistinguishable for GES-5. The ertapenem-GES-2 crystal structure shows that only the core structure of the antibiotic interacts with the active site of the GES-2 ß-lactamase. The identical core structures of ertapenem, doripenem, and meropenem are likely responsible for the observed similarities in the kinetics with these carbapenems. The lack of a methyl group in the core structure of imipenem may provide a structural rationale for the increase in turnover of this carbapenem by the GES ß-lactamases. Our data also show that in GES-2 an extensive hydrogen-bonding network between the acyl-enzyme complex and the active site water attenuates activation of this water molecule, which results in poor deacylation by this enzyme.


Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Carbapenêmicos/metabolismo , Escherichia coli/enzimologia , Tienamicinas/metabolismo , beta-Lactamases/metabolismo , beta-Lactamas/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Cristalografia por Raios X , Doripenem , Ertapenem , Escherichia coli/química , Escherichia coli/metabolismo , Cinética , Meropeném , Modelos Moleculares , beta-Lactamases/química
10.
Antimicrob Agents Chemother ; 58(4): 2119-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24468778

RESUMO

Carbapenem-hydrolyzing class D ß-lactamases (CHDLs) are enzymes of the utmost clinical importance due to their ability to produce resistance to carbapenems, the antibiotics of last resort for the treatment of various life-threatening infections. The vast majority of these enzymes have been identified in Acinetobacter spp., notably in Acinetobacter baumannii. The OXA-2 and OXA-10 enzymes predominantly occur in Pseudomonas aeruginosa and are currently classified as narrow-spectrum class D ß-lactamases. Here we demonstrate that when OXA-2 and OXA-10 are expressed in Escherichia coli strain JM83, they produce a narrow-spectrum antibiotic resistance pattern. When the enzymes are expressed in A. baumannii ATCC 17978, however, they behave as extended-spectrum ß-lactamases and confer resistance to carbapenem antibiotics. Kinetic studies of OXA-2 and OXA-10 with four carbapenems have demonstrated that their catalytic efficiencies with these antibiotics are in the same range as those of some recognized class D carbapenemases. These results are in disagreement with the classification of the OXA-2 and OXA-10 enzymes as narrow-spectrum ß-lactamases, and they suggest that other class D enzymes that are currently regarded as noncarbapenemases may in fact be CHDLs.


Assuntos
Proteínas de Bactérias/metabolismo , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , beta-Lactamases/metabolismo , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Resistência Microbiana a Medicamentos , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Bactérias Gram-Negativas/enzimologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia
11.
ACS Infect Dis ; 10(4): 1232-1249, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38511828

RESUMO

Carbapenem antibiotics are used as a last-resort treatment for infections caused by multidrug-resistant bacteria. The wide spread of carbapenemases in Gram-negative bacteria has severely compromised the utility of these drugs and represents a serious public health threat. To combat carbapenemase-mediated resistance, new antimicrobials and inhibitors of these enzymes are urgently needed. Here, we describe the interaction of the atypically C5α-methyl-substituted carbapenem, NA-1-157, with the GES-5 carbapenemase. MICs of this compound against Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii producing the enzyme were reduced 4-16-fold when compared to MICs of the commercial carbapenems, reaching clinically sensitive breakpoints. When NA-1-157 was combined with meropenem, a strong synergistic effect was observed. Kinetic and ESI-LC/MS studies demonstrated that NA-1-157 is a potent inhibitor of GES-5, with a high inactivation efficiency of (2.9 ± 0.9) × 105 M-1 s-1. Acylation of GES-5 by NA-1-157 was biphasic, with the fast phase completing within seconds, and the slow phase taking several hours and likely proceeding through a reversible tetrahedral intermediate. Deacylation was extremely slow (k3 = (2.4 ± 0.3) × 10-7 s-1), resulting in a residence time of 48 ± 6 days. MD simulation of the GES-5-meropenem and GES-5-NA-1-157 acyl-enzyme complexes revealed that the C5α-methyl group in NA-1-157 sterically restricts rotation of the 6α-hydroxyethyl group preventing ingress of the deacylating water into the vicinity of the scissile bond of the acyl-enzyme intermediate. These data demonstrate that NA-1-157 is a potent irreversible inhibitor of the GES-5 carbapenemase.


Assuntos
Carbapenêmicos , beta-Lactamases , Carbapenêmicos/farmacologia , Carbapenêmicos/química , Meropeném/farmacologia , beta-Lactamases/química , Proteínas de Bactérias/química
12.
Proc Natl Acad Sci U S A ; 107(44): 18832-7, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20921377

RESUMO

In contrast to the current state of knowledge in the field of eukaryotic chromosome segregation, relatively little is known about the mechanisms coordinating the appropriate segregation of bacterial chromosomes. In Escherichia coli, the MukB/E/F complex and topoisomerase IV (Topo IV) are both crucial players in this process. Topo IV removes DNA entanglements following the replication of the chromosome, whereas MukB, a member of the structural maintenance of chromosomes protein family, serves as a bacterial condensin. We demonstrate here a direct physical interaction between the dimerization domain of MukB and the C-terminal domain of the ParC subunit of Topo IV. In addition, we find that MukB alters the activity of Topo IV in vitro. Finally, we isolate a MukB mutant, D692A, that is deficient in its interaction with ParC and show that this mutant fails to rescue the temperature-sensitive growth phenotype of a mukB(-) strain. These results show that MukB and Topo IV are linked physically and functionally and indicate that the activities of these proteins are not limited to chromosome segregation but likely also play a key role in the control of higher-order bacterial chromosome structure.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Bacterianos/metabolismo , DNA Topoisomerase IV/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/genética , Substituição de Aminoácidos , Proteínas Cromossômicas não Histona/genética , Cromossomos Bacterianos/genética , DNA Topoisomerase IV/genética , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Complexos Multiproteicos/genética , Mutação de Sentido Incorreto , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
13.
ACS Infect Dis ; 9(5): 1123-1136, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37130087

RESUMO

The wide spread of carbapenem-hydrolyzing ß-lactamases in Gram-negative bacteria has diminished the utility of the last-resort carbapenem antibiotics, significantly narrowing the available therapeutic options. In the Enterobacteriaceae family, which includes many important clinical pathogens such as Klebsiella pneumoniae and Escherichia coli, production of class D ß-lactamases from the OXA-48-type family constitutes the major mechanism of resistance to carbapenems. To address the public health threat posed by these enzymes, novel, effective therapeutics are urgently needed. Here, we report evaluation of a novel, C5α-methyl-substituted carbapenem, NA-1-157, and show that its MICs against bacteria producing OXA-48-type enzymes were reduced by 4- to 32-fold when compared to meropenem. When combined with commercial carbapenems, the potency of NA-1-157 was further enhanced, resulting in target potentiation concentrations ranging from 0.125 to 2 µg/mL. Kinetic studies demonstrated that the compound is poorly hydrolyzed by OXA-48, with a catalytic efficiency 30- to 50-fold lower than those of imipenem and meropenem. Acylation of OXA-48 by NA-1-157 was severely impaired, with a rate 10,000- to 36,000-fold slower when compared to the commercial carbapenems. Docking, molecular dynamics, and structural studies demonstrated that the presence of the C5α-methyl group in NA-1-157 creates steric clashes within the active site, leading to differences in the position and the hydrogen-bonding pattern of the compound, which are incompatible with efficient acylation. This study demonstrates that NA-1-157 is a promising novel carbapenem for treatment of infections caused by OXA-48-producing bacterial pathogens.


Assuntos
Antibacterianos , Carbapenêmicos , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Antibacterianos/farmacologia , Klebsiella/metabolismo , Cinética , beta-Lactamases/metabolismo , Escherichia coli/metabolismo
14.
ACS Infect Dis ; 8(9): 1948-1961, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-35973205

RESUMO

l,d-Transpeptidases (LDTs) are enzymes that catalyze reactions essential for biogenesis of the bacterial cell wall, including formation of 3-3 cross-linked peptidoglycan. Unlike the historically well-known bacterial transpeptidases, the penicillin-binding proteins (PBPs), LDTs are resistant to inhibition by the majority of ß-lactam antibiotics, with the exception of carbapenems and penems, allowing bacteria to survive in the presence of these drugs. Here we report characterization of LdtAb from the clinically important pathogen, Acinetobacter baumannii. We show that A. baumannii survives inactivation of LdtAb alone or in combination with PBP1b or PBP2, while simultaneous inactivation of LdtAb and PBP1a is lethal. Minimal inhibitory concentrations (MICs) of all 13 ß-lactam antibiotics tested decreased 2- to 8-fold for the LdtAb deletion mutant, while further decreases were seen for both double mutants, with the largest, synergistic effect observed for the LdtAb + PBP2 deletion mutant. Mass spectrometry experiments showed that LdtAb forms complexes in vitro only with carbapenems. However, the acylation rate of these antibiotics is very slow, with the reaction taking longer than four hours to complete. Our X-ray crystallographic studies revealed that LdtAb has a unique structural architecture and is the only known LDT to have two different peptidoglycan-binding domains.


Assuntos
Acinetobacter baumannii , Peptidil Transferases , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Carbapenêmicos/química , Carbapenêmicos/farmacologia , Peptidoglicano/metabolismo , Peptidil Transferases/metabolismo
15.
mBio ; 13(3): e0036722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420470

RESUMO

Acinetobacter baumannii has become a major nosocomial pathogen, as it is often multidrug-resistant, which results in infections characterized by high mortality rates. The bacterium achieves high levels of resistance to ß-lactam antibiotics by producing ß-lactamases, enzymes which destroy these valuable agents. Historically, the carbapenem family of ß-lactam antibiotics have been the drugs of choice for treating A. baumannii infections. However, their effectiveness has been significantly diminished due to the pathogen's production of carbapenem-hydrolyzing class D ß-lactamases (CHDLs); thus, new antibiotics and inhibitors of these enzymes are urgently needed. Here, we describe a new carbapenem antibiotic, MA-1-206, in which the canonical C6 hydroxyethyl group has been replaced with hydroxymethyl. The antimicrobial susceptibility studies presented here demonstrated that this compound is more potent than meropenem and imipenem against A. baumannii producing OXA-23, the most prevalent CHDL of this pathogen, and also against strains producing the CHDL OXA-24/40 and the class B metallo-ß-lactamase VIM-2. Our kinetic and mass spectrometry studies revealed that this drug is a reversible inhibitor of OXA-23, where inhibition takes place through a branched pathway. X-ray crystallographic studies, molecular docking, and molecular dynamics simulations of the OXA-23-MA-1-206 complex show that the C6 hydroxymethyl group forms a hydrogen bond with the carboxylated catalytic lysine of OXA-23, effectively preventing deacylation. These results provide a promising strategy for designing a new generation of CHDL-resistant carbapenems to restore their efficacy against deadly A. baumannii infections. IMPORTANCE Carbapenem antibiotics are the drugs of choice for treatment of deadly infections caused by Gram-negative bacteria. However, their efficacy is severely compromised by the wide spread of carbapenem-hydrolyzing class D ß-lactamases (CHDLs). The importance of this research is the discovery that substitution of the canonical hydroxyethyl group of carbapenems by a hydroxymethyl significantly enhances stability against inactivation by the major CHDL of Acinetobacter baumannii, OXA-23. These results provide a novel strategy for designing next-generation, carbapenemase-stable carbapenems to fight multidrug-resistant infections caused by Gram-negative pathogens.


Assuntos
Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Inibidores de beta-Lactamases , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo
16.
ACS Infect Dis ; 7(5): 1164-1176, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33390002

RESUMO

Avibactam is a potent diazobicyclooctane inhibitor of class A and C ß-lactamases. The inhibitor also exhibits variable activity against some class D enzymes from Gram-negative bacteria; however, its interaction with recently discovered class D ß-lactamases from Gram-positive bacteria has not been studied. Here, we describe microbiological, kinetic, and mass spectrometry studies of the interaction of avibactam with CDD-1, a class D ß-lactamase from the clinically important pathogen Clostridioides difficile, and show that avibactam is a potent irreversible mechanism-based inhibitor of the enzyme. X-ray crystallographic studies at three time-points demonstrate the rapid formation of a stable CDD-1-avibactam acyl-enzyme complex and highlight differences in the anchoring of the inhibitor by class D enzymes from Gram-positive and Gram-negative bacteria.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos , Clostridioides , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Inibidores de beta-Lactamases/farmacologia
17.
ACS Infect Dis ; 7(6): 1765-1776, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33908775

RESUMO

Class D ß-lactamases have risen to notoriety due to their wide spread in bacterial pathogens, propensity to inactivate clinically important ß-lactam antibiotics, and ability to withstand inhibition by the majority of classical ß-lactamase inhibitors. Understanding the catalytic mechanism of these enzymes is thus vitally important for the development of novel antibiotics and inhibitors active against infections caused by antibiotic-resistant bacteria. Here we report an in crystallo time-resolved study of the interaction of the class D ß-lactamase CDD-1 from Clostridioides difficile with the diazobicyclooctane inhibitor, avibactam. We show that the catalytic carboxylated lysine, a residue that is essential for both acylation and deacylation of ß-lactams, is sequestered within an internal sealed pocket of the enzyme. Time-resolved snapshots generated in this study allowed us to observe decarboxylation of the lysine and movement of CO2 and water molecules through a transient channel formed between the lysine pocket and the substrate binding site facilitated by rotation of the side chain of a conserved leucine residue. These studies provide novel insights on avibactam binding to CDD-1 and into the catalytic mechanism of class D ß-lactamases in general.


Assuntos
Clostridioides , beta-Lactamases , Compostos Azabicíclicos , Modelos Moleculares , beta-Lactamases/genética
18.
Acta Crystallogr D Struct Biol ; 75(Pt 12): 1129-1137, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31793906

RESUMO

Aminoglycoside phosphotransferases (APHs) are one of three families of aminoglycoside-modifying enzymes that confer high-level resistance to the aminoglycoside antibiotics via enzymatic modification. This has now rendered many clinically important drugs almost obsolete. The APHs specifically phosphorylate hydroxyl groups on the aminoglycosides using a nucleotide triphosphate as the phosphate donor. The APH(2'') family comprises four distinct members, isolated primarily from Enterococcus sp., which vary in their substrate specificities and also in their preference for the phosphate donor (ATP or GTP). The structure of the ternary complex of APH(2'')-IIIa with GDP and kanamycin was solved at 1.34 Šresolution and was compared with substrate-bound structures of APH(2'')-Ia, APH(2'')-IIa and APH(2'')-IVa. In contrast to the case for APH(2'')-Ia, where it was proposed that the enzyme-mediated hydrolysis of GTP is regulated by conformational changes in its N-terminal domain upon GTP binding, APH(2'')-IIa, APH(2'')-IIIa and APH(2'')-IVa show no such regulatory mechanism, primarily owing to structural differences in the N-terminal domains of these enzymes.


Assuntos
Enterococcus/enzimologia , Guanosina Trifosfato/química , Canamicina/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Proteínas de Bactérias/química , Sítios de Ligação , Cristalografia por Raios X/métodos , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
19.
Biochemistry ; 47(51): 13455-62, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19035654

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) is involved in the regulation of the actin cytoskeleton through interactions with a number of actin-binding proteins. We present here NMR titration experiments that monitor the interaction between the cytoskeletal protein profilin and inositol 1,4,5-triphosphate (IP(3)), the headgroup of PI(4,5)P(2). These experiments probe the interaction directly, at equilibrium, and with profilin in its native state. We show the binding between profilin and IP(3) can readily be observed at high concentrations, even though profilin does not bind to IP(3) under physiological conditions. Moreover, the titration data using wild-type profilin and an R88L mutant support the existence of at least three headgroup binding sites on profilin, consistent with previous experimentation with intact PI(4,5)P(2). This work suggests that various soluble inositol ligands can serve as effective probes to facilitate in vitro studies of PI-binding proteins that require membrane surfaces for high-affinity binding.


Assuntos
Inositol 1,4,5-Trifosfato/química , Espectroscopia de Ressonância Magnética/métodos , Profilinas/química , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Cinética , Ligantes , Micelas , Modelos Moleculares , Conformação Molecular , Profilinas/metabolismo , Ligação Proteica
20.
mBio ; 9(6)2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563905

RESUMO

Clostridium difficile is the causative agent of the deadly C. difficile infection. Resistance of the pathogen to ß-lactam antibiotics plays a major role in the development of the disease, but the mechanism of resistance is currently unknown. We discovered that C. difficile encodes class D ß-lactamases, i.e., CDDs, which are intrinsic to this species. We studied two CDD enzymes, CDD-1 and CDD-2, and showed that they display broad-spectrum, high catalytic efficiency against various ß-lactam antibiotics, including penicillins and expanded-spectrum cephalosporins. We demonstrated that the cdd genes are poorly expressed under the control of their own promoters and contribute only partially to the observed resistance to ß-lactams. However, when the cdd1 gene was expressed under the control of efficient promoters in the antibiotic-sensitive Clostridium cochlearium strain, it produced high-level resistance to ß-lactams. Taken together, the results determined in this work demonstrate the existence in C. difficile of intrinsic class D ß-lactamases which constitute a reservoir of highly potent enzymes capable of conferring broad-spectrum, clinically relevant levels of resistance to ß-lactam antibiotics. This discovery is a significant contribution to elucidation of the mechanism(s) of resistance of the clinically important pathogen C. difficile to ß-lactam antibiotics.IMPORTANCEC. difficile is a spore-forming anaerobic bacterium which causes infection of the large intestine with high mortality rates. The C. difficile infection is difficult to prevent and treat, as the pathogen is resistant to many antimicrobial agents. Prolonged use of ß-lactam antibiotics for treatment of various infectious diseases triggers the infection, as these drugs suppress the abundance of protective gut bacteria, allowing the resistant C. difficile bacteria to multiply. While resistance of C. difficile to ß-lactam antibiotics plays the major role in the development of the disease, the mechanism of resistance is unknown. The significance of our research is in the discovery in C. difficile of ß-lactamases, enzymes that destroy ß-lactam antibiotics. These findings ultimately can help to combat deadly C. difficile infections.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/enzimologia , beta-Lactamases/classificação , beta-Lactamases/genética , beta-Lactamas/farmacologia , Antibacterianos/farmacologia , Resistência beta-Lactâmica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA