Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Immunity ; 55(11): 2085-2102.e9, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36228615

RESUMO

Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.


Assuntos
Macrófagos , Doenças Neuroinflamatórias , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Microglia/metabolismo , Encéfalo
2.
PLoS Pathog ; 20(4): e1012186, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648216

RESUMO

In the bloodstream of mammalian hosts, African trypanosomes face the challenge of protecting their invariant surface receptors from immune detection. This crucial role is fulfilled by a dense, glycosylated protein layer composed of variant surface glycoproteins (VSGs), which undergo antigenic variation and provide a physical barrier that shields the underlying invariant surface glycoproteins (ISGs). The protective shield's limited permeability comes at the cost of restricted access to the extracellular host environment, raising questions regarding the specific function of the ISG repertoire. In this study, we employ an integrative structural biology approach to show that intrinsically disordered membrane-proximal regions are a common feature of members of the ISG super-family, conferring the ability to switch between compact and elongated conformers. While the folded, membrane-distal ectodomain is buried within the VSG layer for compact conformers, their elongated counterparts would enable the extension beyond it. This dynamic behavior enables ISGs to maintain a low immunogenic footprint while still allowing them to engage with the host environment when necessary. Our findings add further evidence to a dynamic molecular organization of trypanosome surface antigens wherein intrinsic disorder underpins the characteristics of a highly flexible ISG proteome to circumvent the constraints imposed by the VSG coat.


Assuntos
Tripanossomíase Africana , Glicoproteínas Variantes de Superfície de Trypanosoma , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/imunologia , Proteínas de Protozoários/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Animais
3.
Eur J Immunol ; 53(9): e2250024, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366246

RESUMO

mAbs have been instrumental for targeted cancer therapies. However, their relatively large size and physicochemical properties result in a heterogenous distribution in the tumor microenvironment, usually restricted to the first cell layers surrounding blood vessels, and a limited ability to penetrate the brain. Nanobodies are tenfold smaller, resulting in a deeper tumor penetration and the ability to reach cells in poorly perfused tumor areas. Nanobodies are rapidly cleared from the circulation, which generates a fast target-to-background contrast that is ideally suited for molecular imaging purposes but may be less optimal for therapy. To circumvent this problem, nanobodies have been formatted to noncovalently bind albumin, increasing their serum half-life without majorly increasing their size. Finally, nanobodies have shown superior qualities to infiltrate brain tumors as compared to mAbs. In this review, we discuss why these features make nanobodies prime candidates for targeted therapy of cancer.


Assuntos
Neoplasias Encefálicas , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/uso terapêutico , Anticorpos Monoclonais , Microambiente Tumoral
4.
PLoS Pathog ; 18(3): e1010376, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271685

RESUMO

Sodalis glossinidius, a secondary bacterial symbiont of the tsetse fly, is currently considered as a potential delivery system for anti-trypanosomal components interfering with African trypanosome transmission (i.e. paratransgenesis). Nanobodies (Nbs) have been proposed as potential candidates to target the parasite during development in the tsetse fly. In this study, we have generated an immune Nb-library and developed a panning strategy to select Nbs against the Trypanosoma brucei brucei procyclic developmental stage present in the tsetse fly midgut. Selected Nbs were expressed, purified, assessed for binding and tested for their impact on the survival and growth of in vitro cultured procyclic T. b. brucei parasites. Next, we engineered S. glossinidius to express the selected Nbs and validated their ability to block T. brucei development in the tsetse fly midgut. Genetically engineered S. glossinidius expressing Nb_88 significantly compromised parasite development in the tsetse fly midgut both at the level of infection rate and parasite load. Interestingly, expression of Nb_19 by S. glossinidius resulted in a significantly enhanced midgut establishment. These data are the first to show in situ delivery by S. glossinidius of effector molecules that can target the trypanosome-tsetse fly crosstalk, interfering with parasite development in the fly. These proof-of-principle data represent a major step forward in the development of a control strategy based on paratransgenic tsetse flies. Finally, S. glossinidius-based Nb delivery can also be applied as a powerful laboratory tool to unravel the molecular determinants of the parasite-vector association.


Assuntos
Anticorpos de Domínio Único , Trypanosoma brucei brucei , Trypanosoma , Moscas Tsé-Tsé , Animais , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Anticorpos de Domínio Único/metabolismo , Simbiose , Trypanosoma brucei brucei/genética , Moscas Tsé-Tsé/parasitologia
5.
J Infect Dis ; 226(3): 528-540, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35363871

RESUMO

BACKGROUND: Trypanosoma brucei brucei evades host immune responses by multiple means, including the disruption of B-cell homeostasis. This hampers anti-trypanosome vaccine development. Because the cellular mechanism underlying this pathology has never been addressed, our study focuses on the fate of memory B cells (MBCs) in vaccinated mice upon trypanosome challenge. METHODS: A trypanosome variant surface glycoprotein (VSG) and fluorescent phycoerythrin were used as immunization antigens. Functional and cellular characteristics of antigen-specific MBCs were studied after homologous and heterologous parasite challenge. RESULTS: Immunization with AnTat1.1 VSG triggers a specific antibody response and isotype-switched CD73+CD273+CD80+ MBCs, delivering 90% sterile protection against a homologous parasite challenge. As expected, AnTat1.1 VSG immunization does not protect against infection with heterologous VSG-switched parasites. After successful curative drug treatment, mice were shown to have completely lost their previously induced protective immunity against the homologous parasites, coinciding with the loss of vaccine-induced MBCs. A phycoerythrin immunization approach confirmed that trypanosome infections cause the general loss of antigen-specific splenic and bone marrow MBCs and a reduction in antigen-specific immunoglobulin G. CONCLUSIONS: Trypanosomosis induces general immunological memory loss. This benefits the parasites by reducing the stringency for antigenic variation requirements.


Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Animais , Células B de Memória , Camundongos , Ficoeritrina , Glicoproteínas Variantes de Superfície de Trypanosoma
6.
PLoS Pathog ; 16(2): e1008170, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32012211

RESUMO

Bovine African Trypanosomosis is an infectious parasitic disease affecting livestock productivity and thereby impairing the economic development of Sub-Saharan Africa. The most important trypanosome species implicated is T. congolense, causing anemia as most important pathological feature. Using murine models, it was shown that due to the parasite's efficient immune evasion mechanisms, including (i) antigenic variation of the variable surface glycoprotein (VSG) coat, (ii) induction of polyclonal B cell activation, (iii) loss of B cell memory and (iv) T cell mediated immunosuppression, disease prevention through vaccination has so far been impossible. In trypanotolerant models a strong, early pro-inflammatory immune response involving IFN-γ, TNF and NO, combined with a strong humoral anti-VSG response, ensures early parasitemia control. This potent protective inflammatory response is counterbalanced by the production of the anti-inflammatory cytokine IL-10, which in turn prevents early death of the host from uncontrolled hyper-inflammation-mediated immunopathologies. Though at this stage different hematopoietic cells, such as NK cells, T cells and B cells as well as myeloid cells (i.e. alternatively activated myeloid cells (M2) or Ly6c- monocytes), were found to produce IL-10, the contribution of non-hematopoietic cells as potential IL-10 source during experimental T. congolense infection has not been addressed. Here, we report for the first time that during the chronic stage of T. congolense infection non-hematopoietic cells constitute an important source of IL-10. Our data shows that hepatocyte-derived IL-10 is mandatory for host survival and is crucial for the control of trypanosomosis-induced inflammation and associated immunopathologies such as anemia, hepatosplenomegaly and excessive tissue injury.


Assuntos
Hepatócitos , Evasão da Resposta Imune , Interleucina-10/imunologia , Trypanosoma congolense , Tripanossomíase Africana , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Doença Crônica , Modelos Animais de Doenças , Feminino , Hepatócitos/imunologia , Hepatócitos/parasitologia , Hepatócitos/patologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Ativação Linfocitária , Camundongos , Monócitos/imunologia , Monócitos/patologia , Linfócitos T/imunologia , Linfócitos T/patologia , Trypanosoma congolense/imunologia , Trypanosoma congolense/patogenicidade , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/patologia
7.
Int J Mol Sci ; 21(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906437

RESUMO

Nanobodies (Nbs) are the smallest antigen-binding, single domain fragments derived from heavy-chain-only antibodies from Camelidae. Among the several advantages over conventional monoclonal antibodies, their small size (12-15 kDa) allows them to extravasate rapidly, to show improved tissue penetration, and to clear rapidly from blood, which are important characteristics for cancer imaging and targeted radiotherapy. Herein, we identified Nbs against CD33, a marker for acute myeloid leukemia (AML). A total of 12 Nbs were generated against recombinant CD33 protein, out of which six bound natively CD33 protein, expressed on the surface of acute myeloid leukemia THP-1 cells. The equilibrium dissociation constants (KD) of these six Nbs and CD33 range from 4 to 270 nM, and their melting temperature (Tm) varies between 52.67 and 67.80 °C. None of these Nbs showed leukemogenicity activity in vitro. The selected six candidates were radiolabeled with 99mTc, and their biodistribution was evaluated in THP-1-tumor-bearing mice. The imaging results demonstrated the fast tumor-targeting capacity of the Nbs in vivo. Among the anti-CD33 Nbs, Nb_7 showed the highest tumor uptake (2.53 ± 0.69 % injected activity per gram (IA/g), with low background signal, except in the kidneys and bladder. Overall, Nb_7 exhibits the best characteristics to be used as an anti-CD33 targeting vehicle for future diagnostic or therapeutic applications.


Assuntos
Leucemia Mieloide Aguda/imunologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Anticorpos de Domínio Único/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epitopos/imunologia , Feminino , Humanos , Cinética , Camundongos , Camundongos SCID , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Anticorpos de Domínio Único/genética , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único , Temperatura de Transição
8.
Molecules ; 25(4)2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32085597

RESUMO

A wide range of frogs produce skin poisons composed of bioactive peptides for defence against pathogens, parasites and predators. While several frog families have been thoroughly screened for skin-secreted peptides, others, like the Microhylidae, have remained mostly unexplored. Previous studies of microhylids found no evidence of peptide secretion, suggesting that this defence adaptation was evolutionarily lost. We conducted transcriptome analyses of the skins of Phrynomantis bifasciatus and Phrynomantis microps, two African microhylid species long suspected to be poisonous. Our analyses reveal 17 evolutionary related transcripts that diversified from to those of cytolytic peptides found in other frog families. The 19 peptides predicted to be processed from these transcripts, named phrynomantins, show a striking structural diversity that is distinct from any previously identified frog skin peptide. Functional analyses of five phrynomantins confirm the loss of a cytolytic function and the absence of insecticidal or proinflammatory activity, suggesting that they represent an evolutionary transition to a new, yet unknown function. Our study shows that peptides have been retained in the defence poison of at least one microhylid lineage and encourages research on similarly understudied taxa to further elucidate the diversity and evolution of skin defence molecules.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Anuros/metabolismo , Pele/química , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Células CACO-2 , Evolução Molecular , Feminino , Humanos , Inseticidas/toxicidade , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Filogenia , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
9.
FASEB J ; 32(6): 3411-3422, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401625

RESUMO

Sepsis-leading to septic shock-is the leading cause of death in intensive care units. The systemic inflammatory response to infection, which is initiated by activated myeloid cells, plays a key role in the lethal outcome. Macrophage migration inhibitory factor (MIF) is an upstream immunoregulatory mediator, released by myeloid cells, that underlies a common genetic susceptibility to different infections and septic shock. Accordingly, strategies that are aimed at inhibiting the action of MIF have therapeutic potential. Here, we report the isolation and characterization of tailorable, small, affinity-matured nanobodies (Nbs; single-domain antigen-binding fragments derived from camelid heavy-chain Abs) directed against MIF. Of importance, these bioengineered Nbs bind both human and mouse MIFs with nanomolar affinity. NbE5 and NbE10 inhibit key MIF functions that can exacerbate septic shock, such as the tautomerase activity of MIF (by blocking catalytic pocket residues that are critical for MIF's conformation and receptor binding), the TNF-inducing potential, and the ability of MIF to antagonize glucocorticoid action. A lead NbE10, tailored to be a multivalent, half-life extended construct (NbE10-NbAlb8-NbE10), attenuated lethality in murine endotoxemia when administered via single injection, either prophylactically or therapeutically. Hence, Nbs, with their structural and pharmacologic advantages over currently available inhibitors, may be an effective, novel approach to interfere with the action of MIF in septic shock and other conditions of inflammatory end-organ damage.-Sparkes, A., De Baetselier, P., Brys, L., Cabrito, I., Sterckx, Y. G.-J., Schoonooghe, S., Muyldermans, S., Raes, G., Bucala, R., Vanlandschoot, P., Van Ginderachter, J. A., Stijlemans, B. Novel half-life extended anti-MIF nanobodies protect against endotoxic shock.


Assuntos
Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Choque Séptico/tratamento farmacológico , Anticorpos de Domínio Único/farmacologia , Animais , Feminino , Meia-Vida , Humanos , Oxirredutases Intramoleculares/imunologia , Lipopolissacarídeos/toxicidade , Fatores Inibidores da Migração de Macrófagos/imunologia , Camundongos , Choque Séptico/induzido quimicamente , Choque Séptico/imunologia , Choque Séptico/patologia , Anticorpos de Domínio Único/imunologia
10.
PLoS Pathog ; 12(9): e1005862, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27632207

RESUMO

Animal African trypanosomosis is a major threat to the economic development and human health in sub-Saharan Africa. Trypanosoma congolense infections represent the major constraint in livestock production, with anemia as the major pathogenic lethal feature. The mechanisms underlying anemia development are ill defined, which hampers the development of an effective therapy. Here, the contribution of the erythropoietic and erythrophagocytic potential as well as of hemodilution to the development of T. congolense-induced anemia were addressed in a mouse model of low virulence relevant for bovine trypanosomosis. We show that in infected mice, splenic extramedullary erythropoiesis could compensate for the chronic low-grade type I inflammation-induced phagocytosis of senescent red blood cells (RBCs) in spleen and liver myeloid cells, as well as for the impaired maturation of RBCs occurring in the bone marrow and spleen. Rather, anemia resulted from hemodilution. Our data also suggest that the heme catabolism subsequent to sustained erythrophagocytosis resulted in iron accumulation in tissue and hyperbilirubinemia. Moreover, hypoalbuminemia, potentially resulting from hemodilution and liver injury in infected mice, impaired the elimination of toxic circulating molecules like bilirubin. Hemodilutional thrombocytopenia also coincided with impaired coagulation. Combined, these effects could elicit multiple organ failure and uncontrolled bleeding thus reduce the survival of infected mice. MIF (macrophage migrating inhibitory factor), a potential pathogenic molecule in African trypanosomosis, was found herein to promote erythrophagocytosis, to block extramedullary erythropoiesis and RBC maturation, and to trigger hemodilution. Hence, these data prompt considering MIF as a potential target for treatment of natural bovine trypanosomosis.


Assuntos
Anemia/metabolismo , Eritropoese , Hematopoese Extramedular , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Trypanosoma congolense/metabolismo , Tripanossomíase Africana/metabolismo , Anemia/genética , Anemia/parasitologia , Anemia/patologia , Animais , Medula Óssea/metabolismo , Medula Óssea/parasitologia , Medula Óssea/patologia , Bovinos , Modelos Animais de Doenças , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Eritrócitos/patologia , Hemodiluição , Humanos , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Camundongos , Camundongos Knockout , Baço/metabolismo , Baço/parasitologia , Baço/patologia , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/parasitologia , Trombocitopenia/patologia , Tripanossomíase Africana/genética , Tripanossomíase Africana/patologia
11.
PLoS Pathog ; 11(6): e1004964, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26070118

RESUMO

African trypanosomes are the causative agents of Human African Trypanosomosis (HAT/Sleeping Sickness) and Animal African Trypanosomosis (AAT/Nagana). A common hallmark of African trypanosome infections is inflammation. In murine trypanosomosis, the onset of inflammation occurs rapidly after infection and is manifested by an influx of myeloid cells in both liver and spleen, accompanied by a burst of serum pro-inflammatory cytokines. Within 48 hours after reaching peak parasitemia, acute anemia develops and the percentage of red blood cells drops by 50%. Using a newly developed in vivo erythrophagocytosis assay, we recently demonstrated that activated cells of the myeloid phagocytic system display enhanced erythrophagocytosis causing acute anemia. Here, we aimed to elucidate the mechanism and immune pathway behind this phenomenon in a murine model for trypanosomosis. Results indicate that IFNγ plays a crucial role in the recruitment and activation of erythrophagocytic myeloid cells, as mice lacking the IFNγ receptor were partially protected against trypanosomosis-associated inflammation and acute anemia. NK and NKT cells were the earliest source of IFNγ during T. b. brucei infection. Later in infection, CD8+ and to a lesser extent CD4+ T cells become the main IFNγ producers. Cell depletion and transfer experiments indicated that during infection the absence of NK, NKT and CD8+ T cells, but not CD4+ T cells, resulted in a reduced anemic phenotype similar to trypanosome infected IFNγR-/- mice. Collectively, this study shows that NK, NKT and CD8+ T cell-derived IFNγ is a critical mediator in trypanosomosis-associated pathology, driving enhanced erythrophagocytosis by myeloid phagocytic cells and the induction of acute inflammation-associated anemia.


Assuntos
Anemia/imunologia , Eritrócitos/patologia , Interferon gama/imunologia , Células Mieloides/imunologia , Fagocitose/imunologia , Tripanossomíase Africana/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/imunologia , Separação Celular , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Células Matadoras Naturais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/imunologia , Tripanossomíase Africana/complicações
12.
Eur J Immunol ; 45(5): 1482-93, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25645754

RESUMO

Pancreas injury by partial duct ligation (PDL) activates a healing response, encompassing ß-cell neogenesis and proliferation. Macrophages (MΦs) were recently shown to promote ß-cell proliferation after PDL, but they remain poorly characterized. We assessed myeloid cell diversity and the factors driving myeloid cell dynamics following acute pancreas injury by PDL. In naive and sham-operated pancreas, the myeloid cell compartment consisted mainly of two distinct tissue-resident MΦ types, designated MHC-II(lo) and MHC-II(hi) MΦs, the latter being predominant. MHC-II(lo) and MHC-II(hi) pancreas MΦs differed at the molecular level, with MHC-II(lo) MΦs being more M2-activated. After PDL, there was an early surge of Ly6C(hi) monocyte infiltration in the pancreas, followed by a transient MHC-II(lo) MΦ peak and ultimately a restoration of the MHC-II(hi) MΦ-dominated steady-state equilibrium. These intricate MΦ dynamics in PDL pancreas depended on monocyte recruitment by C-C chemokine receptor 2 and macrophage-colony stimulating factor receptor as well as on macrophage-colony stimulating factor receptor-dependent local MΦ proliferation. Functionally, MHC-II(lo) MΦs were more angiogenic. We further demonstrated that, at least in C-C chemokine receptor 2-KO mice, tissue MΦs, rather than Ly6C(hi) monocyte-derived MΦs, contributed to ß-cell proliferation. Together, our study fully characterizes the MΦ subsets in the pancreas and clarifies the complex dynamics of MΦs after PDL injury.


Assuntos
Macrófagos/imunologia , Macrófagos/patologia , Monócitos/imunologia , Monócitos/patologia , Pâncreas/imunologia , Pâncreas/lesões , Animais , Antígenos Ly/metabolismo , Movimento Celular/imunologia , Proliferação de Células , Microambiente Celular/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Ligadura , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/classificação , Células Mieloides/imunologia , Células Mieloides/patologia , Pâncreas/patologia , Ductos Pancreáticos/lesões , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Regeneração/imunologia
13.
PLoS Pathog ; 10(9): e1004414, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25255103

RESUMO

African trypanosomiasis is a chronic debilitating disease affecting the health and economic well-being of many people in developing countries. The pathogenicity associated with this disease involves a persistent inflammatory response, whereby M1-type myeloid cells, including Ly6C(high) inflammatory monocytes, are centrally implicated. A comparative gene analysis between trypanosusceptible and trypanotolerant animals identified MIF (macrophage migrating inhibitory factor) as an important pathogenic candidate molecule. Using MIF-deficient mice and anti-MIF antibody treated mice, we show that MIF mediates the pathogenic inflammatory immune response and increases the recruitment of inflammatory monocytes and neutrophils to contribute to liver injury in Trypanosoma brucei infected mice. Moreover, neutrophil-derived MIF contributed more significantly than monocyte-derived MIF to increased pathogenic liver TNF production and liver injury during trypanosome infection. MIF deficient animals also featured limited anemia, coinciding with increased iron bio-availability, improved erythropoiesis and reduced RBC clearance during the chronic phase of infection. Our data suggest that MIF promotes the most prominent pathological features of experimental trypanosome infections (i.e. anemia and liver injury), and prompt considering MIF as a novel target for treatment of trypanosomiasis-associated immunopathogenicity.


Assuntos
Anemia/imunologia , Apoptose/imunologia , Eritrócitos/imunologia , Oxirredutases Intramoleculares/fisiologia , Fatores Inibidores da Migração de Macrófagos/fisiologia , Macrófagos/imunologia , Trypanosoma brucei brucei/patogenicidade , Tripanossomíase Africana/imunologia , Anemia/metabolismo , Anemia/parasitologia , Anemia/patologia , Animais , Western Blotting , Medula Óssea/imunologia , Medula Óssea/parasitologia , Medula Óssea/patologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Eritrócitos/patologia , Feminino , Citometria de Fluxo , Fígado/imunologia , Fígado/parasitologia , Fígado/patologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/parasitologia , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Neutrófilos/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Baço/imunologia , Baço/metabolismo , Baço/parasitologia , Baço/patologia , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/patologia
14.
PLoS Genet ; 9(8): e1003662, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935531

RESUMO

The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs) acting as defense toxins against predators, and antimicrobial peptides (AMPs) providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization), completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Anuros/genética , Evolução Molecular , Peptídeos/genética , Pele/metabolismo , Sequência de Aminoácidos/genética , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Anuros/metabolismo , Perfilação da Expressão Gênica , Variação Genética , Genoma , Peptídeos/química , Peptídeos/metabolismo , Filogenia , Alinhamento de Sequência
15.
PLoS Pathog ; 9(10): e1003731, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204274

RESUMO

BACKGROUND: In order to promote infection, the blood-borne parasite Trypanosoma brucei releases factors that upregulate arginase expression and activity in myeloid cells. METHODOLOGY/PRINCIPAL FINDINGS: By screening a cDNA library of T. brucei with an antibody neutralizing the arginase-inducing activity of parasite released factors, we identified a Kinesin Heavy Chain isoform, termed TbKHC1, as responsible for this effect. Following interaction with mouse myeloid cells, natural or recombinant TbKHC1 triggered SIGN-R1 receptor-dependent induction of IL-10 production, resulting in arginase-1 activation concomitant with reduction of nitric oxide (NO) synthase activity. This TbKHC1 activity was IL-4Rα-independent and did not mirror M2 activation of myeloid cells. As compared to wild-type T. brucei, infection by TbKHC1 KO parasites was characterized by strongly reduced parasitaemia and prolonged host survival time. By treating infected mice with ornithine or with NO synthase inhibitor, we observed that during the first wave of parasitaemia the parasite growth-promoting effect of TbKHC1-mediated arginase activation resulted more from increased polyamine production than from reduction of NO synthesis. In late stage infection, TbKHC1-mediated reduction of NO synthesis appeared to contribute to liver damage linked to shortening of host survival time. CONCLUSION: A kinesin heavy chain released by T. brucei induces IL-10 and arginase-1 through SIGN-R1 signaling in myeloid cells, which promotes early trypanosome growth and favors parasite settlement in the host. Moreover, in the late stage of infection, the inhibition of NO synthesis by TbKHC1 contributes to liver pathogenicity.


Assuntos
Arginase/imunologia , Cinesinas/imunologia , Proteínas de Protozoários/imunologia , Trypanosoma brucei brucei/imunologia , Tripanossomíase Africana/imunologia , Animais , Arginase/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Cinesinas/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Camundongos , Camundongos Knockout , Óxido Nítrico/genética , Óxido Nítrico/imunologia , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/genética , Tripanossomíase Africana/patologia
16.
Nat Commun ; 15(1): 1779, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413606

RESUMO

Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T. brucei protein that induces IL-10 in myeloid cells, which promotes parasite infection invasiveness. Q586B2 is expressed during all T. brucei life stages and is conserved in all Trypanosomatidae. Deleting the Q586B2-encoding Tb927.6.4140 gene in T. brucei results in a decreased peak parasitemia and prolonged survival, without affecting parasite fitness in vitro, yet promoting short stumpy differentiation in vivo. Accordingly, neutralization of Q586B2 with newly generated nanobodies could hamper myeloid-derived IL-10 production and reduce parasitemia. In addition, immunization with Q586B2 delays mortality upon a challenge with various trypanosomes, including Trypanosoma cruzi. Collectively, we uncovered a conserved protein playing an important regulatory role in Trypanosomatid infection establishment.


Assuntos
Trypanosoma brucei brucei , Trypanosoma cruzi , Tripanossomíase Africana , Animais , Humanos , Trypanosoma brucei brucei/genética , Interleucina-10/genética , Fatores de Virulência , Parasitemia/parasitologia , Tripanossomíase Africana/parasitologia
17.
PLoS Pathog ; 7(6): e1002072, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21698216

RESUMO

The African trypanosome Trypanosoma brucei, which persists within the bloodstream of the mammalian host, has evolved potent mechanisms for immune evasion. Specifically, antigenic variation of the variant-specific surface glycoprotein (VSG) and a highly active endocytosis and recycling of the surface coat efficiently delay killing mediated by anti-VSG antibodies. Consequently, conventional VSG-specific intact immunoglobulins are non-trypanocidal in the absence of complement. In sharp contrast, monovalent antigen-binding fragments, including 15 kDa nanobodies (Nb) derived from camelid heavy-chain antibodies (HCAbs) recognizing variant-specific VSG epitopes, efficiently lyse trypanosomes both in vitro and in vivo. This Nb-mediated lysis is preceded by very rapid immobilisation of the parasites, massive enlargement of the flagellar pocket and major blockade of endocytosis. This is accompanied by severe metabolic perturbations reflected by reduced intracellular ATP-levels and loss of mitochondrial membrane potential, culminating in cell death. Modification of anti-VSG Nbs through site-directed mutagenesis and by reconstitution into HCAbs, combined with unveiling of trypanolytic activity from intact immunoglobulins by papain proteolysis, demonstrates that the trypanolytic activity of Nbs and Fabs requires low molecular weight, monovalency and high affinity. We propose that the generation of low molecular weight VSG-specific trypanolytic nanobodies that impede endocytosis offers a new opportunity for developing novel trypanosomiasis therapeutics. In addition, these data suggest that the antigen-binding domain of an anti-microbial antibody harbours biological functionality that is latent in the intact immunoglobulin and is revealed only upon release of the antigen-binding fragment.


Assuntos
Anticorpos Antiprotozoários/farmacologia , Endocitose/efeitos dos fármacos , Trypanosoma brucei brucei/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Anticorpos Antiprotozoários/uso terapêutico , Afinidade de Anticorpos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Nanopartículas , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/fisiologia , Trypanosoma brucei brucei/ultraestrutura , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/metabolismo , Tripanossomíase Africana/terapia
18.
Nat Med ; 12(5): 580-4, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16604085

RESUMO

High systemic drug toxicity and increasing prevalence of drug resistance hampers efficient treatment of human African trypanosomiasis (HAT). Hence, development of new highly specific trypanocidal drugs is necessary. Normal human serum (NHS) contains apolipoprotein L-I (apoL-I), which lyses African trypanosomes except resistant forms such as Trypanosoma brucei rhodesiense. T. b. rhodesiense expresses the apoL-I-neutralizing serum resistance-associated (SRA) protein, endowing this parasite with the ability to infect humans and cause HAT. A truncated apoL-I (Tr-apoL-I) has been engineered by deleting its SRA-interacting domain, which makes it lytic for T. b. rhodesiense. Here, we conjugated Tr-apoL-I with a single-domain antibody (nanobody) that efficiently targets conserved cryptic epitopes of the variant surface glycoprotein (VSG) of trypanosomes to generate a new manmade type of immunotoxin with potential for trypanosomiasis therapy. Treatment with this engineered conjugate resulted in clear curative and alleviating effects on acute and chronic infections of mice with both NHS-resistant and NHS-sensitive trypanosomes.


Assuntos
Apolipoproteínas/imunologia , Imunotoxinas/uso terapêutico , Lipoproteínas HDL/imunologia , Tripanossomicidas/uso terapêutico , Tripanossomíase Africana/tratamento farmacológico , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Apolipoproteína L1 , Apolipoproteínas/genética , Humanos , Cadeias Pesadas de Imunoglobulinas/imunologia , Lipoproteínas HDL/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Tripanossomicidas/imunologia , Trypanosoma brucei rhodesiense/imunologia , Trypanosoma brucei rhodesiense/metabolismo , Tripanossomíase Africana/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
19.
Cancers (Basel) ; 15(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36672343

RESUMO

New diagnostic methods and treatments have significantly decreased the mortality rates of cancer patients, but further improvements are warranted based on the identification of novel tumor-promoting molecules that can serve as therapeutic targets. The macrophage migration inhibitory factor (MIF) family of cytokines, comprising MIF and DDT (also known as MIF2), are overexpressed in almost all cancer types, and their high expressions are related to a worse prognosis for the patients. MIF is involved in 9 of the 10 hallmarks of cancer, and its inhibition by antibodies, nanobodies, or small synthetic molecules has shown promising results. Even though DDT is also proposed to be involved in several of the hallmarks of cancer, the available information about its pro-tumoral role and mechanism of action is more limited. Here, we provide an overview of the involvement of both MIF and DDT in cancer, and we propose that blocking both cytokines is needed to obtain the maximum anti-tumor response.

20.
Cancers (Basel) ; 15(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958332

RESUMO

Within the tumor microenvironment (TME) exists a complex signaling network between cancer cells and stromal cells, which determines the fate of tumor progression. Hence, interfering with this signaling network forms the basis for cancer therapy. Yet, many types of cancer, in particular, solid tumors, are refractory to the currently used treatments, so there is an urgent need for novel molecular targets that could improve current anti-cancer therapeutic strategies. Lipocalin-2 (Lcn-2), a secreted siderophore-binding glycoprotein that regulates iron homeostasis, is highly upregulated in various cancer types. Due to its pleiotropic role in the crosstalk between cancer cells and stromal cells, favoring tumor progression, it could be considered as a novel biomarker for prognostic and therapeutic purposes. However, the exact signaling route by which Lcn-2 promotes tumorigenesis remains unknown, and Lcn-2-targeting moieties are largely uninvestigated. This review will (i) provide an overview on the role of Lcn-2 in orchestrating the TME at the level of iron homeostasis, macrophage polarization, extracellular matrix remodeling, and cell migration and survival, and (ii) discuss the potential of Lcn-2 as a promising novel drug target that should be pursued in future translational research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA