Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Biomed Eng ; 52(9): 2534-2545, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38836980

RESUMO

Extravehicular activities will play a crucial role in lunar exploration on upcoming Artemis missions and may involve astronauts operating a lunar terrain vehicle (LTV) in a standing posture. This study assessed kinematic response and injury risks using an active muscle human body model (HBM) restrained in an upright posture on the LTV by simulating dynamic acceleration pulses related to lunar surface irregularities. Linear accelerations and rotational displacements of 5 lunar obstacles (3 craters; 2 rocks) over 5 slope inclinations were applied across 25 simulations. All body injury metrics were below NASA's injury tolerance limits, but compressive forces were highest in the lumbar (250-550N lumbar, tolerance: 5300N) and lower extremity (190-700N tibia, tolerance: 1350N) regions. There was a strong association between the magnitudes of body injury metrics and LTV resultant linear acceleration (ρ = 0.70-0.81). There was substantial upper body motion, with maximum forward excursion reaching 375 mm for the head and 260 mm for the chest. Our findings suggest driving a lunar rover in an upright posture for these scenarios is a low severity impact presenting low body injury risks. Injury metrics increased along the load path, from the lower body (highest metrics) to the upper body (lowest metrics). While upper body injury metrics were low, increased body motion could potentially pose a risk of injury from flail and occupant interaction with the surrounding vehicle, suit, and restraint hardware.


Assuntos
Lua , Humanos , Projetos Piloto , Atividade Extraespaçonave , Aceleração , Fenômenos Biomecânicos , Modelos Biológicos , Ferimentos e Lesões/fisiopatologia , Masculino
2.
Ann Biomed Eng ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39058402

RESUMO

PURPOSE: Wearable sensors are used to measure head impact exposure in sports. The Head Impact Telemetry (HIT) System is a helmet-mounted system that has been commonly utilized to measure head impacts in American football. Advancements in sensor technology have fueled the development of alternative sensor methods such as instrumented mouthguards. The objective of this study was to compare peak magnitude measured from high school football athletes dually instrumented with the HIT System and a mouthpiece-based sensor system. METHODS: Data was collected at all contact practices and competitions over a single season of spring football. Recorded events were observed and identified on video and paired using event timestamps. Paired events were further stratified by removing mouthpiece events with peak resultant linear acceleration below 10 g and events with contact to the facemask or body of athletes. RESULTS: A total of 133 paired events were analyzed in the results. There was a median difference (mouthpiece subtracted from HIT System) in peak resultant linear and rotational acceleration for concurrently measured events of 7.3 g and 189 rad/s2. Greater magnitude events resulted in larger kinematic differences between sensors and a Bland Altman analysis found a mean bias of 8.8 g and 104 rad/s2, respectively. CONCLUSION: If the mouthpiece-based sensor is considered close to truth, the results of this study are consistent with previous HIT System validation studies indicating low error on average but high scatter across individual events. Future researchers should be mindful of sensor limitations when comparing results collected using varying sensor technologies.

3.
AJNR Am J Neuroradiol ; 45(8): 1116-1123, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39054293

RESUMO

BACKGROUND AND PURPOSE: During a season of high school football, adolescents with actively developing brains experience a considerable number of head impacts. Our aim was to determine whether repetitive head impacts in the absence of a clinically diagnosed concussion during a season of high school football produce changes in cognitive performance or functional connectivity of the salience network and its central hub, the dorsal anterior cingulate cortex. MATERIALS AND METHODS: Football players were instrumented with the Head Impact Telemetry System during all practices and games, and the helmet sensor data were used to compute a risk-weighted exposure metric (RWEcp), accounting for the cumulative risk during the season. Participants underwent MRI and a cognitive battery (ImPACT) before and shortly after the football season. A control group of noncontact/limited-contact-sport athletes was formed from 2 cohorts: one from the same school and protocol and another from a separate, nearly identical study. RESULTS: Sixty-three football players and 34 control athletes were included in the cognitive performance analysis. Preseason, the control group scored significantly higher on the ImPACT Visual Motor (P = .04) and Reaction Time composites (P = .006). These differences increased postseason (P = .003, P < .001, respectively). Additionally, the control group had significantly higher postseason scores on the Visual Memory composite (P = .001). Compared with controls, football players showed significantly less improvement in the Verbal (P = .04) and Visual Memory composites (P = .01). A significantly greater percentage of contact athletes had lower-than-expected scores on the Verbal Memory (27% versus 6%), Visual Motor (21% versus 3%), and Reaction Time composites (24% versus 6%). Among football players, a higher RWEcp was significantly associated with greater increments in ImPACT Reaction Time (P = .03) and Total Symptom Scores postseason (P = .006). Fifty-seven football players and 13 control athletes were included in the imaging analyses. Postseason, football players showed significant decreases in interhemispheric connectivity of the dorsal anterior cingulate cortex (P = .026) and within-network connectivity of the salience network (P = .018). These decreases in dorsal anterior cingulate cortex interhemispheric connectivity and within-network connectivity of the salience network were significantly correlated with deteriorating ImPACT Total Symptom (P = .03) and Verbal Memory scores (P = .04). CONCLUSIONS: Head impact exposure during a single season of high school football is negatively associated with cognitive performance and brain network connectivity. Future studies should further characterize these short-term effects and examine their relationship with long-term sequelae.


Assuntos
Concussão Encefálica , Futebol Americano , Imageamento por Ressonância Magnética , Humanos , Adolescente , Masculino , Futebol Americano/lesões , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/fisiopatologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Cognição/fisiologia , Dispositivos de Proteção da Cabeça , Traumatismos em Atletas/diagnóstico por imagem , Traumatismos em Atletas/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA