Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chromosome Res ; 27(1-2): 41-55, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30610403

RESUMO

Repair of ribosomal DNA (rDNA) is a very important nuclear process due to the most active transcription of ribosomal genes. Proper repair of rDNA is required for physiological biogenesis of ribosomes. Here, we analyzed the epigenetics of the DNA damage response in a nucleolar compartment, thus in the ribosomal genes studied in nonirradiated and UVA-irradiated mouse embryonic fibroblasts (MEFs). We found that the promoter of ribosomal genes is not abundant on H4K20me2, but it is densely occupied by H4K20me3. Ribosomal genes, regulated via UBF1/2 proteins, were characterized by an interaction between UBF1/2 and H4K20me2/me3. This interaction was strengthened by UVA irradiation that additionally causes a focal accumulation of H4K20me3 in the nucleolus. No interaction has been found between UBF1/2 and H3K9me3. Interestingly, UVA irradiation decreases the levels of H3K9me3 and H4K20me3 at 28S rDNA. Altogether, the UVA light affects the epigenetic status of ribosomal genes at 28S rDNA and strengthens an interaction between UBF1/2 proteins and H4K20me2/me3.


Assuntos
DNA Ribossômico/genética , Histonas/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Raios Ultravioleta , Animais , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA , Epigênese Genética/efeitos da radiação , Imunofluorescência , Regulação da Expressão Gênica/efeitos da radiação , Sequenciamento de Nucleotídeos em Larga Escala , Metilação , Camundongos , Regiões Promotoras Genéticas , Ligação Proteica
2.
Genome Res ; 25(6): 845-57, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25677181

RESUMO

Although physiological steroid levels are often pulsatile (ultradian), the genomic effects of this pulsatility are poorly understood. By utilizing glucocorticoid receptor (GR) signaling as a model system, we uncovered striking spatiotemporal relationships between receptor loading, lifetimes of the DNase I hypersensitivity sites (DHSs), long-range interactions, and gene regulation. We found that hormone-induced DHSs were enriched within ± 50 kb of GR-responsive genes and displayed a broad spectrum of lifetimes upon hormone withdrawal. These lifetimes dictate the strength of the DHS interactions with gene targets and contribute to gene regulation from a distance. Our results demonstrate that pulsatile and constant hormone stimulations induce unique, treatment-specific patterns of gene and regulatory element activation. These modes of activation have implications for corticosteroid function in vivo and for steroid therapies in various clinical settings.


Assuntos
Cromatina/genética , Glucocorticoides/farmacologia , Elementos de Resposta , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Perilipina-4 , Ligação Proteica , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Análise de Sequência de DNA
3.
J Cell Biochem ; 116(10): 2195-209, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25808548

RESUMO

We examined the levels and distribution of post-translationally modified histones and protamines in human sperm. Using western blot immunoassay, immunofluorescence, mass spectrometry (MS), and FLIM-FRET approaches, we analyzed the status of histone modifications and the protamine P2. Among individual samples, we observed variability in the levels of H3K9me1, H3K9me2, H3K27me3, H3K36me3, and H3K79me1, but the level of acetylated (ac) histones H4 was relatively stable in the sperm head fractions, as demonstrated by western blot analysis. Sperm heads with lower levels of P2 exhibited lower levels of H3K9ac, H3K9me1, H3K27me3, H3K36me3, and H3K79me1. A very strong correlation was observed between the levels of P2 and H3K9me2. FLIM-FRET analysis additionally revealed that acetylated histones H4 are not only parts of sperm chromatin but also appear in a non-integrated form. Intriguingly, H4ac and H3K27me3 were detected in sperm tail fractions via western blot analysis. An appearance of specific histone H3 and H4 acetylation and H3 methylation in sperm tail fractions was also confirmed by both LC-MS/MS and MALDI-TOF MS analysis. Taken together, these data indicate that particular post-translational modifications of histones are uniquely distributed in human sperm, and this distribution varies among individuals and among the sperm of a single individual.


Assuntos
Histona-Lisina N-Metiltransferase/biossíntese , Histonas/genética , Processamento de Proteína Pós-Traducional/genética , Espermatozoides/metabolismo , Acetilação , Sequência de Aminoácidos , Cromatina/genética , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Masculino , Metilação , Espermatozoides/crescimento & desenvolvimento , Espectrometria de Massas em Tandem
4.
J Cell Biochem ; 115(3): 476-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24123263

RESUMO

A- and C-type lamins are intermediate filament proteins responsible for the maintenance of nuclear shape and most likely nuclear architecture. Here, we propose that pronounced invaginations of A/C-type lamins into the nuclear interior represent channels for the transport of regulatory molecules to and from nuclear and nucleolar regions. Using fluorescent protein technology and immunofluorescence, we show that A-type lamin channels interact with several nuclear components, including fibrillarin- and UBF-positive regions of nucleoli, foci of heterochromatin protein 1 ß, polycomb group bodies, and genomic regions associated with DNA repair. Similar associations were observed between A/C-type lamin channels and nuclear pores, lamin-associated protein LAP2α, and promyelocytic leukemia nuclear bodies. Interestingly, regions with high levels of A/C-type lamins had low levels of B-type lamins, and vice versa. These characteristics were observed in primary and immortalized mouse embryonic fibroblasts as well as human and mouse embryonic stem cell colonies exhibiting stem cell-specific lamin positivity. Our findings indicate that internal channels formed by nuclear lamins likely contribute to normal cellular processes through association with various nuclear and nucleolar structures.


Assuntos
Núcleo Celular/genética , Reparo do DNA/genética , Lamina Tipo A/ultraestrutura , Lamina Tipo B/ultraestrutura , Animais , Proteínas Cromossômicas não Histona/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Camundongos
5.
Heliyon ; 10(4): e25599, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38370261

RESUMO

Background: Chemical modifications in mRNAs, tRNAs, rRNAs, and non-coding RNAs stabilize these nucleic acids and regulate their function. In addition to regulating the translation of genetic information from mRNA to proteins, it has been revealed that modifications in RNAs regulate repair processes in the genome. Methods: Using local laser microirradiation, confocal microscopy, dot blots, and mass spectrometry we studied the role of N7-methylguanosine (m7G), which is co-transcriptionally installed in RNA. Results: Here, we show that after UVC and UVA irradiation, the level of m7G RNA is increased initially in the cytoplasm, and after local laser microirradiation, m7G RNA is highly abundant in UVA-damaged chromatin. This process is poly(ADP-ribose) polymerase (PARP)-dependent, but not accompanied by changes in the level of m7G-writers, including methyltransferases RNMT, METTL1, and WBSCR22. We also observed that METTL1 deficiency does not affect the recruitment of m7G RNA to microirradiated chromatin. Analyzing the levels of mRNA, let-7e, and miR-203a in both the cytoplasm and the cell nucleus, we revealed that UVC irradiation changed the level of mRNA, and significantly increased the pool of both let-7e and miR-203a, which correlated with radiation-induced m7G RNA increase in the cytoplasm. Conclusions: Irradiation by UV light increases the m7G RNA pool in the cytoplasm and in the microirradiated genome. Thus, epigenetically modified RNAslikely contribute to DNA damage responses or m7G signals the presence of RNA damage.

6.
Biol Cell ; 104(7): 418-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22443097

RESUMO

BACKGROUND INFORMATION: Promyelocytic leukaemia (PML) bodies are specific nuclear structures with functional significance for acute promyelocytic leukaemia. In this study, we analysed the trajectories of PML bodies using single-particle tracking. RESULTS: We observed that the recovery of PML protein after photobleaching was ATP dependent in both wild-type (wt) and A-type lamin-deficient cells. The movement of PML bodies was faster and the nuclear area occupied by particular PML bodies was larger in A-type lamin-deficient fibroblasts compared with their wt counterparts. Moreover, dysfunction of the LMNA gene increased the frequency of mutual interactions between individual PML bodies and influenced the morphology of these domains at the ultrastructural level. As a consequence of A-type lamin deficiency, PML protein accumulated in nuclear blebs and frequently appeared at the nuclear periphery. CONCLUSIONS: We suggest that the physiological function of lamin A proteins is important for events that occur in the compartment of PML bodies. This observation was confirmed in other experimental models characterised by lamin changes, including apoptosis or the differentiation of mouse embryonic stem cells.


Assuntos
Corpos de Inclusão Intranuclear/metabolismo , Lamina Tipo A/deficiência , Leucemia Promielocítica Aguda/metabolismo , Animais , Apoptose , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/metabolismo , Corpos de Inclusão Intranuclear/ultraestrutura , Cinética , Lamina Tipo A/metabolismo , Camundongos , Reprodutibilidade dos Testes
7.
Epigenetics Chromatin ; 16(1): 26, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322549

RESUMO

RNA modifications have been known for many years, but their function has not been fully elucidated yet. For instance, the regulatory role of acetylation on N4-cytidine (ac4C) in RNA can be explored not only in terms of RNA stability and mRNA translation but also in DNA repair. Here, we observe a high level of ac4C RNA at DNA lesions in interphase cells and irradiated cells in telophase. Ac4C RNA appears in the damaged genome from 2 to 45 min after microirradiation. However, RNA cytidine acetyltransferase NAT10 did not accumulate to damaged sites, and NAT10 depletion did not affect the pronounced recruitment of ac4C RNA to DNA lesions. This process was not dependent on the G1, S, and G2 cell cycle phases. In addition, we observed that the PARP inhibitor, olaparib, prevents the recruitment of ac4C RNA to damaged chromatin. Our data imply that the acetylation of N4-cytidine, especially in small RNAs, has an important role in mediating DNA damage repair. Ac4C RNA likely causes de-condensation of chromatin in the vicinity of DNA lesions, making it accessible for other DNA repair factors involved in the DNA damage response. Alternatively, RNA modifications, including ac4C, could be direct markers of damaged RNAs.


Assuntos
Citidina , RNA , RNA/metabolismo , Citidina/genética , Citidina/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Cromatina , Acetilação
8.
J Cell Physiol ; 227(5): 1838-50, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21732356

RESUMO

Polycomb group (PcG) proteins, organized into Polycomb bodies, are important regulatory components of epigenetic processes involved in the heritable transcriptional repression of target genes. Here, we asked whether acetylation can influence the nuclear arrangement and function of the BMI1 protein, a core component of the Polycomb group complex, PRC1. We used time-lapse confocal microscopy, micro-irradiation by UV laser (355 nm) and GFP technology to study the dynamics and function of the BMI1 protein. We observed that BMI1 was recruited to UV-damaged chromatin simultaneously with decreased lysine acetylation, followed by the recruitment of heterochromatin protein HP1ß to micro-irradiated regions. Pronounced recruitment of BMI1 was rapid, with half-time τ = 15 sec; thus, BMI1 is likely involved in the initiation step leading to the recognition of UV-damaged sites. Histone hyperacetylation, stimulated by HDAC inhibitor TSA, suppression of transcription by actinomycin D, and ATP-depletion prevented increased accumulation of BMI1 to γH2AX-positive irradiated chromatin. Moreover, BMI1 had slight ability to recognize spontaneously occurring DNA breaks caused by other pathophysiological processes. Taken together, our data indicate that the dynamics of recognition of UV-damaged chromatin, and the nuclear arrangement of BMI1 protein can be influenced by acetylation and occur as an early event prior to the recruitment of HPß to UV-irradiated chromatin.


Assuntos
Cromatina/metabolismo , Cromatina/efeitos da radiação , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Células 3T3 , Acetilação , Animais , Linhagem Celular , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Inibidores de Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/metabolismo , Camundongos , Microscopia Confocal/métodos , Proteínas Nucleares/genética , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Imagem com Lapso de Tempo , Raios Ultravioleta
9.
J Cell Biochem ; 113(11): 3313-29, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22644811

RESUMO

Although it is well known that chromosomes are non-randomly organized during interphase, it is not completely clear whether higher-order chromatin structure is transmitted from mother to daughter cells. Therefore, we addressed the question of how chromatin is rearranged during interphase and whether heterochromatin pattern is transmitted after mitosis. We additionally tested the similarity of chromatin arrangement in sister interphase nuclei. We noticed a very active cell rotation during interphase, especially when histone hyperacetylation was induced or transcription was inhibited. This natural phenomenon can influence the analysis of nuclear arrangement. Using photoconversion of Dendra2-tagged core histone H4 we showed that the distribution of chromatin in daughter interphase nuclei differed from that in mother cells. Similarly, the nuclear distribution of heterochromatin protein 1ß (HP1ß) was not completely identical in mother and daughter cells. However, identity between mother and daughter cells was in many cases evidenced by nucleolar composition. Moreover, morphology of nucleoli, HP1ß protein, Cajal bodies, chromosome territories, and gene transcripts were identical in sister cell nuclei. We conclude that the arrangement of interphase chromatin is not transmitted through mitosis, but the nuclear pattern is identical in naturally synchronized sister cells. It is also necessary to take into account the possibility that cell rotation and the degree of chromatin condensation during functionally specific cell cycle phases might influence our view of nuclear architecture.


Assuntos
Nucléolo Celular/ultraestrutura , Corpos Enovelados/ultraestrutura , Heterocromatina/genética , Interfase/genética , Mitose/genética , Animais , Linhagem Celular , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Corpos Enovelados/efeitos dos fármacos , Corpos Enovelados/genética , Dactinomicina/farmacologia , Corantes Fluorescentes , Heterocromatina/efeitos dos fármacos , Heterocromatina/ultraestrutura , Inibidores de Histona Desacetilases/farmacologia , Histonas/genética , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Interfase/efeitos dos fármacos , Camundongos , Microscopia de Fluorescência , Mitose/efeitos dos fármacos , Processos Fotoquímicos , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/biossíntese
10.
Cell Biol Int ; 35(12): 1195-203, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21635225

RESUMO

Here, we focus on epigenetic changes in leukaemia and MM (multiple myeloma) cells. We show how the histone signature, DNA methylation and levels of select tumour-suppressor proteins can be affected by inhibitors of HDACs (histone deacetylases) and Dnmts (DNA methyltransferases). Both inhibitors, TSA (trichostatin A) and 5-AZA (5-azacytidine), have the ability to change the histone signature in a tumour-specific manner. In MM cells, we observed changes in H3K4 methylation, while in leukaemia cells, H3K9 methylation was especially affected by select inhibitors. Compared with normal peripheral blood lymphocytes, tumour cell samples were characterized by increased H3K9 acetylation, increased H3K4me2, H3K9me2 and HP1α (heterochromatin protein 1α) levels and specific changes were also observed for DNA methylation. Additionally, we showed that the tumour suppressor pRb1 (retinoblastoma protein) is more sensitive to epigenetic-based anti-cancer stimuli than p53. We have found significant decrease in the levels of pRb1 and p53 in both myeloma and leukaemia cells after HDAC inhibition.


Assuntos
Antineoplásicos/farmacologia , Epigênese Genética , Leucemia/tratamento farmacológico , Mieloma Múltiplo/tratamento farmacológico , Azacitidina/farmacologia , Homólogo 5 da Proteína Cromobox , Metilação de DNA , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Inativação Gênica , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Leucemia/genética , Mieloma Múltiplo/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
Life (Basel) ; 11(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34357041

RESUMO

METTL16 methyltransferase is responsible for the methylation of N6-adenosine (m6A) in several RNAs. In mouse cells, we showed that the nuclear distribution of METTL16 is cell cycle-specific. In the G1/S phases, METTL16 accumulates to the nucleolus, while in the G2 phase, the level of METTL16 increases in the nucleoplasm. In metaphase and anaphase, there is a very low pool of the METTL16 protein, but in telophase, residual METTL16 appears to be associated with the newly formed nuclear lamina. In A-type lamin-depleted cells, we observed a reduction of METTL16 when compared with the wild-type counterpart. However, METTL16 does not interact with A-type and B-type lamins, but interacts with Lamin B Receptor (LBR) and Lap2α. Additionally, Lap2α depletion caused METTL16 downregulation in the nuclear pool. Furthermore, METTL16 interacted with DDB2, a key protein of the nucleotide excision repair (NER), and also with nucleolar proteins, including TCOF, NOLC1, and UBF1/2, but not fibrillarin. From this view, the METTL16 protein may also regulate the transcription of ribosomal genes because we observed that the high level of m6A in 18S rRNA appeared in cells with upregulated METTL16.

12.
Cells ; 10(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535591

RESUMO

The essential components of splicing are the splicing factors accumulated in nuclear speckles; thus, we studied how DNA damaging agents and A-type lamin depletion affect the properties of these regions, positive on the SC-35 protein. We observed that inhibitor of PARP (poly (ADP-ribose) polymerase), and more pronouncedly inhibitors of RNA polymerases, caused DNA damage and increased the SC35 protein level. Interestingly, nuclear blebs, induced by PARP inhibitor and observed in A-type lamin-depleted or senescent cells, were positive on both the SC-35 protein and another component of the spliceosome, SRRM2. In the interphase cell nuclei, SC-35 interacted with the phosphorylated form of RNAP II, which was A-type lamin-dependent. In mitotic cells, especially in telophase, the SC35 protein formed a well-visible ring in the cytoplasmic fraction and colocalized with ß-catenin, associated with the plasma membrane. The antibody against the SRRM2 protein showed that nuclear speckles are already established in the cytoplasm of the late telophase and at the stage of early cytokinesis. In addition, we observed the occurrence of splicing factors in the nuclear blebs and micronuclei, which are also sites of both transcription and splicing. This conclusion supports the fact that splicing proceeds transcriptionally. According to our data, this process is A-type lamin-dependent. Lamin depletion also reduces the interaction between SC35 and ß-catenin in mitotic cells.


Assuntos
Laminas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , RNA Polimerase II/metabolismo , Fatores de Processamento de RNA/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Poli(ADP-Ribose) Polimerase-1
13.
Crit Rev Eukaryot Gene Expr ; 20(3): 181-94, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21175410

RESUMO

Genomes are exposed to various external stimuli that induce DNA damage in the form of single- or double-stranded DNA breaks. Fragile sites in the human genome are sensitive to genotoxic stress and, when not appropriately repaired, are responsible for chromosomal aberrations, including the gene amplifications observed in a variety of tumors. Moreover, when DNA lesions from different chromosomes are in close proximity and not repaired, the probability of chromosome translocations is greatly increased. These events can be induced by ionizing radiation that, in a majority of cells, induces a G2/M cell cycle arrest and is characterized by the repositioning of many tumor-related genes closer to the nuclear interior. On the basis of this knowledge, we review functional and structural aspects of chromosomal rearrangements and the DNA repair machinery.


Assuntos
Cromatina/genética , Sítios Frágeis do Cromossomo , Instabilidade Genômica , Animais , Humanos
14.
Cells ; 9(2)2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033081

RESUMO

The DNA damage response is mediated by both DNA repair proteins and epigenetic markers. Here, we observe that N6-methyladenosine (m6A), a mark of the epitranscriptome, was common in RNAs accumulated at UV-damaged chromatin; however, inhibitors of RNA polymerases I and II did not affect the m6A RNA level at the irradiated genomic regions. After genome injury, m6A RNAs either diffused to the damaged chromatin or appeared at the lesions enzymatically. DNA damage did not change the levels of METTL3 and METTL14 methyltransferases. In a subset of irradiated cells, only the METTL16 enzyme, responsible for m6A in non-coding RNAs as well as for splicing regulation, was recruited to microirradiated sites. Importantly, the levels of the studied splicing factors were not changed by UVA light. Overall, if the appearance of m6A RNAs at DNA lesions is regulated enzymatically, this process must be mediated via the coregulatory function of METTL-like enzymes. This event is additionally accompanied by radiation-induced depletion of 2,2,7-methylguanosine (m3G/TMG) in RNA. Moreover, UV-irradiation also decreases the global cellular level of N1-methyladenosine (m1A) in RNAs. Based on these results, we prefer a model in which m6A RNAs rapidly respond to radiation-induced stress and diffuse to the damaged sites. The level of both (m1A) RNAs and m3G/TMG in RNAs is reduced as a consequence of DNA damage, recognized by the nucleotide excision repair mechanism.


Assuntos
Adenosina/análogos & derivados , RNA não Traduzido/metabolismo , RNA/metabolismo , Raios Ultravioleta , Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Dano ao DNA , Desmetilação do DNA/efeitos da radiação , Metilação de DNA/genética , Metilação de DNA/efeitos da radiação , Instabilidade Genômica/efeitos da radiação , Guanosina/análogos & derivados , Guanosina/metabolismo , Metilação/efeitos da radiação , Camundongos , Estresse Fisiológico/efeitos da radiação
15.
Mol Cell Biochem ; 330(1-2): 229-38, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19415458

RESUMO

The treatment of human promyelocytic leukemia cell lines HL-60, and to some extent NB-4, with 1alpha,25-dihydroxyvitamin D(3) (VD3) induces differentiation toward the monocytic/macrophage lineage, demonstrated by the increased expression of CD11b and CD14, and the production of opsonized zymosan particles (OZP)-stimulated reactive oxygen species (ROS). Moreover, in more sensitive HL-60 cells, increased expression of 5-lipoxygenase (5-LPO), Mcl-1, IkappaB, and c-Jun, accompanied by the activation of p38 MAPK, was detected. These VD3 effects on HL-60 cell differentiation were significantly potentiated by 5-LPO inhibitors MK-886 and AA-861 and were inverted by SB202190 (SB), a p38 MAPK inhibitor. The inhibition of differentiation by SB was demonstrated by a reduction of CD14 expression and by a decrease in OZP-activated ROS production. These results indicated that p38 MAPK pathway is involved in 5-LPO inhibitors-dependent potentiation of VD3-induced monocytic differentiation.


Assuntos
Araquidonato 5-Lipoxigenase/genética , Diferenciação Celular/efeitos dos fármacos , Inibidores de Lipoxigenase/farmacologia , Monócitos/citologia , Vitamina D/análogos & derivados , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Benzoquinonas/farmacologia , Células HL-60 , Humanos , Indóis/farmacologia , Vitamina D/farmacologia
16.
Eur J Haematol ; 83(1): 35-47, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19220423

RESUMO

The block of hematopoietic differentiation program in acute myeloid leukemia cells can be overcome by differentiating agent like retinoic acid, but it has several side effects. A study of other differentiation signaling pathways is therefore useful to predict potential targets of anti-leukemic therapy. We demonstrated previously that the co-treatment of HL-60 cells with Tumor necrosis factor-alpha (TNF-alpha) (1 ng/mL) and inhibitor of 5-lipoxygenase MK886 (5 microm) potentiated both monocytic differentiation and apoptosis. In this study, we detected enhanced activation of three main types of mitogen-activated protein kinases (MAPKs) (p38, c-Jun amino-terminal kinase [JNK], extracellular signal-regulated kinase [ERK]), so we assessed their role in differentiation using appropriate pharmacologic inhibitors. The inhibition of pro-apoptotic MAPKs (p38 and JNK) suppressed the effect of MK886 + TNF-alpha co-treatment. On the other hand, down-regulation of pro-survival ERK pathway led to increased differentiation. Those effects were accompanied by increased activation of caspases in cells treated by MK886 + TNF-alpha. Pan-caspase inhibitor ZVAD-fmk significantly decreased both number of apoptotic and differentiated cells. The same effect was observed after inhibition of caspase 9, but not caspase 3 and 8. To conclude, we evidenced that the activation of apoptotic processes and pathways supporting apoptosis (p38 and JNK MAPKs) is required for the monocytic differentiation of HL-60 cells.


Assuntos
Apoptose/efeitos dos fármacos , Indóis/farmacologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/patologia , Monócitos/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Apoptose/fisiologia , Inibidores de Caspase , Caspases/metabolismo , Diferenciação Celular/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células HL-60 , Humanos , Leucemia Promielocítica Aguda/metabolismo , Inibidores de Lipoxigenase/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Monócitos/patologia , NF-kappa B/antagonistas & inibidores
17.
Nucleus ; 6(4): 301-13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26208041

RESUMO

The nucleolus is a well-organized site of ribosomal gene transcription. Moreover, many DNA repair pathway proteins, including ATM, ATR kinases, MRE11, PARP1 and Ku70/80, localize to the nucleolus (Moore et al., 2011 ). We analyzed the consequences of DNA damage in nucleoli following ultraviolet A (UVA), C (UVC), or γ-irradiation in order to test whether and how radiation-mediated genome injury affects local motion and morphology of nucleoli. Because exposure to radiation sources can induce changes in the pattern of UBF1-positive nucleolar regions, we visualized nucleoli in living cells by GFP-UBF1 expression for subsequent morphological analyses and local motion studies. UVA radiation, but not 5 Gy of γ-rays, induced apoptosis as analyzed by an advanced computational method. In non-apoptotic cells, we observed that γ-radiation caused nucleolar re-positioning over time and changed several morphological parameters, including the size of the nucleolus and the area of individual UBF1-positive foci. Radiation-induced nucleoli re-arrangement was observed particularly in G2 phase of the cell cycle, indicating repair of ribosomal genes in G2 phase and implying that nucleoli are less stable, thus sensitive to radiation, in G2 phase.


Assuntos
Ciclo Celular/efeitos da radiação , Fase G2/efeitos da radiação , Raios gama/efeitos adversos , Animais , Apoptose/efeitos da radiação , Linhagem Celular , Linhagem Celular Tumoral , Nucléolo Celular/efeitos da radiação , Biologia Computacional , Dano ao DNA/efeitos da radiação , Camundongos , Proteínas Pol1 do Complexo de Iniciação de Transcrição/genética , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Transcrição Gênica , Raios Ultravioleta
18.
Epigenetics Chromatin ; 7(1): 39, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25587355

RESUMO

BACKGROUND: The repair of spontaneous and induced DNA lesions is a multistep process. Depending on the type of injury, damaged DNA is recognized by many proteins specifically involved in distinct DNA repair pathways. RESULTS: We analyzed the DNA-damage response after ultraviolet A (UVA) and γ irradiation of mouse embryonic fibroblasts and focused on upstream binding factor 1 (UBF1), a key protein in the regulation of ribosomal gene transcription. We found that UBF1, but not nucleolar proteins RPA194, TCOF, or fibrillarin, was recruited to UVA-irradiated chromatin concurrently with an increase in heterochromatin protein 1ß (HP1ß) level. Moreover, Förster Resonance Energy Transfer (FRET) confirmed interaction between UBF1 and HP1ß that was dependent on a functional chromo shadow domain of HP1ß. Thus, overexpression of HP1ß with a deleted chromo shadow domain had a dominant-negative effect on UBF1 recruitment to UVA-damaged chromatin. Transcription factor UBF1 also interacted directly with DNA inside the nucleolus but no interaction of UBF1 and DNA was confirmed outside the nucleolus, where UBF1 recruitment to DNA lesions appeared simultaneously with cyclobutane pyrimidine dimers; this occurrence was cell-cycle-independent. CONCLUSIONS: We propose that the simultaneous presence and interaction of UBF1 and HP1ß at DNA lesions is activated by the presence of cyclobutane pyrimidine dimers and mediated by the chromo shadow domain of HP1ß. This might have functional significance for nucleotide excision repair.

19.
Nucleus ; 4(2): 134-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23412654

RESUMO

Processing of rRNA in mammalian cells includes a series of cleavages of the primary 47S transcript and results in producing three rRNAs: 18S, 28S and 5.8S. The sequence of the main processing events in human cells has been established, but little is yet known about the dynamics of this process, especially the dynamics of its early stages. In the present study, we used real-time PCR to measure levels of pre-rRNA after inhibition of transcription with actinomycin D. Thus we could estimate the half-life time of rRNA transcripts in two human-derived cell lines, HeLa and LEP (human embryonic fibroblasts), as well as in mouse NIH 3T3 cells. The primary transcripts seemed to be more stable in the human than in the murine cells. Remarkably, the graphs in all cases showed more or less pronounced lag phase, which may reflect preparatory events preceding the first cleavage of the pre-rRNA. Additionally, we followed the dynamics of the decay of the 5'ETS fragment which is degraded only after the formation of 41S rRNA. According to our estimates, the corresponding three (or four) steps of the processing in human cells take five to eight minutes.


Assuntos
Precursores de RNA , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico/genética , Animais , Dactinomicina/farmacologia , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Precursores de RNA/genética , Precursores de RNA/metabolismo , Transcrição Gênica/efeitos dos fármacos
20.
Biochimie ; 95(2): 167-79, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23023195

RESUMO

Apoptotic bodies are the most condensed form of chromatin. In general, chromatin structure and function are mostly dictated by histone post-translational modifications. Thus, we have analyzed the histone signature in apoptotic cells, characterized by pronounced chromatin condensation. Here, H2B mono-acetylation, and H3K9 and H4 acetylation was significantly decreased in apoptotic cells, which maintained a high level of H3K9 methylation. This phenotype was independent of p53 function and distinct levels of anti-apoptotic Bcl2 protein. Interestingly, after etoposide treatment of leukemia and multiple myeloma cells, H3K9 and H4 hypoacetylation was accompanied by increased H3K9me2, but not H3K9me1 or H3K9me3. In adherent mouse fibroblasts, a high level of H3K9me3 and histone deacetylation in apoptotic bodies was likely responsible for the pronounced (∼40%) recovery of GFP-HP1α and GFP-HP1ß after photobleaching. HP1 mobility in apoptotic cells appeared to be unique because limited exchange after photobleaching was observed for other epigenetically important proteins, including GFP-JMJD2b histone demethylase (∼10% fluorescence recovery) or Polycomb group-related GFP-BMI1 protein (∼20% fluorescence recovery). These findings imply a novel fact that only certain subset of proteins in apoptotic bodies is dynamic.


Assuntos
Apoptose/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Proteínas Cromossômicas não Histona/genética , Epigênese Genética/efeitos dos fármacos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Acetilação , Animais , Antineoplásicos Fitogênicos , Adesão Celular , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/metabolismo , Etoposídeo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Histonas/genética , Humanos , Cinética , Metilação , Camundongos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA