Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(5): 114215, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38728140

RESUMO

Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1/Sep2/Pnut and Sep4/Sep5/Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side by side to discretely regulate actomyosin ring dynamics during cell wound repair.


Assuntos
Actinas , Proteínas de Drosophila , Septinas , Cicatrização , Animais , Actinas/metabolismo , Actomiosina/metabolismo , Proteínas Contráteis/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas dos Microfilamentos , Septinas/metabolismo
2.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38014090

RESUMO

Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1-Sep2-Pnut and Sep4-Sep5-Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side-by-side to discretely regulate actomyosin ring dynamics during cell wound repair.

3.
Sci Rep ; 13(1): 4763, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959278

RESUMO

Rho family GTPases regulate both linear and branched actin dynamics by activating downstream effectors to facilitate the assembly and function of complex cellular structures such as lamellipodia and contractile actomyosin rings. Wiskott-Aldrich Syndrome (WAS) family proteins are downstream effectors of Rho family GTPases that usually function in a one-to-one correspondence to regulate branched actin nucleation. In particular, the WAS protein Scar/WAVE has been shown to exhibit one-to-one correspondence with Rac GTPase. Here we show that Rac and SCAR are recruited to cell wounds in the Drosophila repair model and are required for the proper formation and maintenance of the dynamic actomyosin ring formed at the wound periphery. Interestingly, we find that SCAR is recruited to wounds earlier than Rac and is still recruited to the wound periphery in the presence of a potent Rac inhibitor. We also show that while Rac is important for actin recruitment to the actomyosin ring, SCAR serves to organize the actomyosin ring and facilitate its anchoring to the overlying plasma membrane. These differing spatiotemporal recruitment patterns and wound repair phenotypes highlight the Rac-independent functions of SCAR and provide an exciting new context in which to investigate these newly uncovered SCAR functions.


Assuntos
Actinas , Actomiosina , Animais , Actinas/metabolismo , Actomiosina/metabolismo , Citocinese , Citoesqueleto de Actina/metabolismo , Drosophila/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Cicatriz/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
5.
Cells ; 11(18)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139352

RESUMO

To cope with continuous physiological and environmental stresses, cells of all sizes require an effective wound repair process to seal breaches to their cortex. Once a wound is recognized, the cell must rapidly plug the injury site, reorganize the cytoskeleton and the membrane to pull the wound closed, and finally remodel the cortex to return to homeostasis. Complementary studies using various model organisms have demonstrated the importance and complexity behind the formation and translocation of an actin ring at the wound periphery during the repair process. Proteins such as actin nucleators, actin bundling factors, actin-plasma membrane anchors, and disassembly factors are needed to regulate actin ring dynamics spatially and temporally. Notably, Rho family GTPases have been implicated throughout the repair process, whereas other proteins are required during specific phases. Interestingly, although different models share a similar set of recruited proteins, the way in which they use them to pull the wound closed can differ. Here, we describe what is currently known about the formation, translocation, and remodeling of the actin ring during the cell wound repair process in model organisms, as well as the overall impact of cell wound repair on daily events and its importance to our understanding of certain diseases and the development of therapeutic delivery modalities.


Assuntos
Actinas , Citoesqueleto , Actinas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA