Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Biomech Eng ; 144(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802059

RESUMO

Lumbar lordotic correction (LLC), the gold standard treatment for sagittal spinal malalignment (SMA), and its effect on sagittal balance have been critically discussed in recent studies. This paper assesses the biomechanical response of the spinal components to LLC as an additional factor for the evaluation of LLC. Human lumbar spines (L2L5) were loaded with combined bending moments in flexion (Flex)/extension (Ex) or lateral bending (LatBend) and axial rotation (AxRot) in a physiological environment. We examined the dependency of AxRot range of motion (RoM) on the applied bending moment. The results were used to validate a finite element (FE) model of the lumbar spine. With this model, the biomechanical response of the intervertebral discs (IVD) and facet joints under daily motion was studied for different sagittal alignment postures, simulated by a motion in Flex/Ex direction. Applied bending moments decreased AxRot RoM significantly (all P < 0.001). A stronger decline of AxRot RoM for Ex than for Flex direction was observed (all P < 0.0001). Our simulated results largely agreed with the experimental data (all R2 > 0.79). During the daily motion, the IVD was loaded higher with increasing lumbar lordosis (LL) for all evaluated values at L2L3 and L3L4 and posterior annulus stress (AS) at L4L5 (all P < 0.0476). The results of this study indicate that LLC with large extensions of LL may not always be advantageous regarding the biomechanical loading of the IVD. This finding may be used to improve the planning process of LLC treatments.


Assuntos
Vértebras Lombares , Articulação Zigapofisária , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Vértebras Lombares/fisiologia , Postura , Amplitude de Movimento Articular/fisiologia , Articulação Zigapofisária/fisiologia
2.
Eur Spine J ; 31(4): 1013-1021, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34716821

RESUMO

PURPOSE: There is a paucity of studies on new vertebral body tethering (VBT) surgical constructs especially regarding their potentially motion-preserving ability. This study analyses their effects on the ROM of the spine. METHODS: Human spines (T10-L3) were tested under pure moment in four different conditions: (1) native, (2) instrumented with one tether continuously connected in all vertebrae from T10 to L3, (3) additional instrumented with a second tether continuously connected in all vertebrae from T11 to L3, and (4) instrumented with one tether and one titanium rod (hybrid) attached to T12, L1 and L2. The instrumentation was inserted in the left lateral side. The intersegmental ROM was evaluated using a magnetic tracking system, and the medians were analysed. Please check and confirm the author names and initials are correct. Also, kindly confirm the details in the metadata are correct. The mentioned information is correct RESULTS: Compared to the native spine, the instrumented spine presented a reduction of less than 13% in global ROM considering flexion-extension and axial rotation. For left lateral bending, the median global ROM of the native spine (100%) significantly reduced to 74.6%, 66.4%, and 68.1% after testing one tether, two tethers and the hybrid construction, respectively. In these cases, the L1-L2 ROM was reduced to 68.3%, 58.5%, and 38.3%, respectively. In right lateral bending, the normalized global ROM of the spine with one tether, two tethers and the hybrid construction was 58.9%, 54.0%, and 56.6%, respectively. Considering the same order, the normalized L1-L2 ROM was 64.3%, 49.9%, and 35.3%, respectively. CONCLUSION: The investigated VBT techniques preserved global ROM of the spine in flexion-extension and axial rotation while reduced the ROM in lateral bending.


Assuntos
Escoliose , Fenômenos Biomecânicos , Humanos , Vértebras Lombares/cirurgia , Amplitude de Movimento Articular , Escoliose/cirurgia , Coluna Vertebral/cirurgia , Corpo Vertebral
3.
J Biomech Eng ; 142(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31314885

RESUMO

Posterior dynamic stabilization systems (PDSS) were developed to provide stabilization to pathologic or hypermobile spinal segments while maintaining the healthy biomechanics of the spine. Numerous novel dynamic devices incorporate the temperature and moisture dependent material polycarbonate urethane (PCU) due to its mechanical properties and biocompatibility. In this study, standardized pure moment in vitro tests were carried out on human lumbar spines to evaluate the performance of a device containing PCU. An environmental chamber with controlled moisture and temperature was included in the setup to meet the requirements of testing under physiological conditions. Three test conditions were compared: (1) native spine, (2) dynamic instrumentation, and (3) dynamic instrumentation with decompression. The ranges of motion, centers of rotation, and relative pedicle screw motions were evaluated. The device displayed significant stiffening in flexion-extension, lateral bending, and axial rotation load directions. A reduction of the native range of motion diminished the stiffening effect along the spinal column and has the potential to reduce the risk of the onset of degeneration of an adjacent segment. In combination with decompression, the implant decreased the native range of motion for flexion-extension and skew bending, but not for lateral bending and axial rotation. Curve fittings using the sigmoid function were performed to parameterize all load-deflection curves in order to enhance accurate numerical model calibrations and comparisons. The device caused a shift of the center of rotation (COR) in the posterior and caudal direction during flexion-extension loading.


Assuntos
Uretana , Fenômenos Biomecânicos , Cimento de Policarboxilato
4.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331279

RESUMO

The effects of mechanical stress on cells and their extracellular matrix, especially in gliding sections of tendon, are still poorly understood. This study sought to compare the effects of uniaxial stretching on both gliding and traction areas in the same tendon. Flexor digitorum longus muscle tendons explanted from rats were subjected to stretching in a bioreactor for 6, 24, or 48 h, respectively, at 1 Hz and an amplitude of 2.5%. After stimulation, marker expression was quantified by histological and immunohistochemical staining in both gliding and traction areas. We observed a heightened intensity of scleraxis after 6 and 24 h of stimulation in both tendon types, though it had declined again 48 h after stimulation. We observed induced matrix metalloproteinase-1 and -13 protein expression in both tendon types. The bioreactor produced an increase in the mechanical structural strength of the tendon during the first half of the loading time and a decrease during the latter half. Uniaxial stretching of flexor tendon in our set-up can serve as an overloading model. A combination of mechanical and histological data allows us to improve the conditions for cultivating tendon tissues.


Assuntos
Estresse Mecânico , Tendões/fisiologia , Animais , Biomarcadores , Fenômenos Biomecânicos , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Histocitoquímica , Humanos , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Modelos Animais , Ratos , Traumatismos dos Tendões/etiologia , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Tendões/citologia , Técnicas de Cultura de Tecidos , Tração
5.
BMC Musculoskelet Disord ; 17: 307, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27448409

RESUMO

BACKGROUND: Although there are many studies discussing the etiological and pathological factors leading to both, acute and chronic tendon injuries, the pathophysiology of tendon injuries is still not clearly understood. Although most lesions are uncomplicated, treatment is long and unsatisfactory due to the poor vascularity of tendon tissue. Platelet mediator concentrate (PMC) contains many growth factors derived from platelets, which can promote wound healing. In this study we investigate the effects of PMC on tenocyte proliferation and differentiation in order to provide an experimental basis for tissue regeneration strategies and to develop new treatment concepts. METHODS: Using enzyme linked immunosorbent assay (ELISA) we were able to quantify the several growth factors and cytokines found in PMC. Tenocytes were isolated both from human and from mouse Achilles tendons and stimulated with PMC. CyQuant® and Cell Titer Blue® assays were carried out to analyze tendon growth and viability at different concentrations of PMC. Real time RT-PCR was used to analyze tenocyte gene expression with or without PMC treatment. Immunohistochemistry was carried out to detect the tenocyte-specific antibody tenomodulin (TNMD) and scleraxis (SCX). RESULTS: We were able to detect numerous mediators such as platelet derived growth factor BB (PDGF-BB), interleukin 6 (IL-6), vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF-α), transforming growth factor beta 1 (TGF-ß1), and bone morphogenetic proteins 2, 4 and 7 (BMP-4, BMP-2, BMP-7) in PMC. It was possible to show a positive effect of PMC on human tendon cell growth and viability in a dose-dependent manner. Furthermore, PMC treatment led to induction of gene expression of scleraxis (SCX), type I collagen A 1 (Col1A1) and TNMD by tenocytes. CONCLUSIONS: We suggest that the use of autologous PMC may be a suitable addition to conventional tendon therapy that is capable of increasing and optimizing tendon healing and reducing the risk of recurrence.


Assuntos
Indutores da Angiogênese/uso terapêutico , Plaquetas/metabolismo , Traumatismos dos Tendões/tratamento farmacológico , Tenócitos/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Tendão do Calcâneo/citologia , Adolescente , Adulto , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Becaplermina , Proteínas Morfogenéticas Ósseas , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Ensaio de Imunoadsorção Enzimática , Feminino , Perfilação da Expressão Gênica , Voluntários Saudáveis , Humanos , Imuno-Histoquímica , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Regeneração/efeitos dos fármacos , Tenócitos/metabolismo , Tenócitos/fisiologia , Fator A de Crescimento do Endotélio Vascular , Adulto Jovem
6.
Comput Biol Med ; 169: 107851, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38113683

RESUMO

Anterior Vertebral Body Tethering (VBT) is a novel fusionless treatment option for selected adolescent idiopathic scoliosis patients which is gaining widespread interest. The primary objective of this study is to investigate the effects of tether pre-tension within VBT on the biomechanics of the spine including sagittal and transverse parameters as well as primary motion, coupled motion, and stresses acting on the L2 superior endplate. For that purpose, we used a calibrated and validated Finite Element model of the L1-L2 spine. The VBT instrumentation was inserted on the left side of the L1-L2 segment with different cord pre-tensions and submitted to an external pure moment of 6 Nm in different directions. The range of motion (ROM) for the instrumented spine was measured from the initial post-VBT position. The magnitudes of the ROM of the native spine and VBT-instrumented with pre-tensions of 100 N, 200 N, and 300 N were, respectively, 3.29°, 2.35°, 1.90° and 1.61° in extension, 3.30°, 3.46°, 2.79°, and 2.17° in flexion, 2.11°, 1.67°, 1.33° and 1.06° in right axial rotation, and 2.10°, 1.88°, 1.48° and 1.16° in left axial rotation. During flexion-extension, an insignificant coupled lateral bending motion was observed in the native spine. However, VBT instrumentation with pre-tensions of 100 N, 200 N, and 300 N generated coupled right lateral bending of 0.85°, 0.81°, and 0.71° during extension and coupled left lateral bending of 0.32°, 0.24°, and 0.19° during flexion, respectively. During lateral bending, a coupled extension motion of 0.33-0.40° is observed in the native spine, but VBT instrumentation with pre-tensions of 100 N, 200 N, and 300 N generates coupled flexion of 0.67°, 0.58°, and 0.42° during left (side of the implant) lateral bending and coupled extension of 1.28°, 1.07°, and 0.87° during right lateral bending, respectively. Therefore, vertebral body tethering generates coupled motion. Tether pre-tension within vertebral body tethering reduces the motion of the spine.


Assuntos
Escoliose , Corpo Vertebral , Humanos , Adolescente , Análise de Elementos Finitos , Coluna Vertebral , Rotação , Fenômenos Biomecânicos , Amplitude de Movimento Articular , Vértebras Lombares
7.
Comput Methods Programs Biomed ; 229: 107262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36463675

RESUMO

BACKGROUND AND OBJECTIVE: Covid-19 infections are spreading around the globe since December 2019. Several diagnostic methods were developed based on biological investigations and the success of each method depends on the accuracy of identifying Covid infections. However, access to diagnostic tools can be limited, depending on geographic region and the diagnosis duration plays an important role in treating Covid-19. Since the virus causes pneumonia, its presence can also be detected using medical imaging by Radiologists. Hospitals with X-ray capabilities are widely distributed all over the world, so a method for diagnosing Covid-19 from chest X-rays would present itself. Studies have shown promising results in automatically detecting Covid-19 from medical images using supervised Artificial neural network (ANN) algorithms. The major drawback of supervised learning algorithms is that they require huge amounts of data to train. Also, the radiology equipment is not computationally efficient for deep neural networks. Therefore, we aim to develop a Generative Adversarial Network (GAN) based image augmentation to optimize the performance of custom, light, Convolutional networks used for the classification of Chest X-rays (CXR). METHODS: A Progressively Growing Generative Adversarial Network (PGGAN) is used to generate synthetic and augmented data to supplement the dataset. We propose two novel CNN architectures to perform the Multi-class classification of Covid-19, healthy and pneumonia affected Chest X-rays. Comparisons have been drawn to the state of the art models and transfer learning methods to evaluate the superiority of the networks. All the models are trained using enhanced and augmented X-ray images and are compared based on classification metrics. RESULTS: The proposed models had extremely high classification metrics with proposed Architectures having test accuracy of 98.78% and 99.2% respectively while having 40% lesser training parameters than their state of the art counterpart. CONCLUSION: In the present study, a method based on artificial intelligence is proposed, leading to a rapid diagnostic tool for Covid infections based on Generative Adversarial Network (GAN) and Convolutional Neural Networks (CNN). The benefit will be a high accuracy of detection with up to 99% hit rate, a rapid diagnosis, and an accessible Covid identification method by chest X-ray images.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Inteligência Artificial , Redes Neurais de Computação , Algoritmos , Benchmarking , Teste para COVID-19
8.
Ann Biomed Eng ; 51(6): 1244-1255, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36709233

RESUMO

Extended-duration cyclic loading of the spine is known to be correlated to lower back pain (LBP). Therefore, it is important to understand how the loading history affects the entire structural behavior of the spine, including the viscoelastic effects. Six human spinal segments (L4L5) were loaded with pure moments up to 7.5 Nm cyclically for half an hour, kept unloaded for 15 min, and loaded with three cycles. This procedure was performed in flexion-extension (FE), axial rotation (AR), and lateral bending (LB) and repeated six times per direction for a total of 18 h of testing per segment. A Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) was trained to predict the change in the biomechanical response under cyclic loading. A strong positive correlation between the total testing time and the ratio of the third cycle to the last cycle of the loading sequence was found (BT: [Formula: see text] =  0.3469, p = 0.0003, RT: [Formula: see text] =0.1988, p  =   0.0377). The moment-range of motion (RoM) curves could be very well predicted with an RNN ([Formula: see text]=0.988), including the correlation between testing time and testing temperature as inputs. This study shows successfully the feasibility of using RNNs to predict changing moment-RoM curves under cyclic moment loading.


Assuntos
Vértebras Lombares , Humanos , Temperatura , Fenômenos Biomecânicos/fisiologia , Vértebras Lombares/fisiologia , Amplitude de Movimento Articular/fisiologia , Rotação , Cadáver
9.
Sci Rep ; 12(1): 19186, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357530

RESUMO

Covid-19 has been a global concern since 2019, crippling the world economy and health. Biological diagnostic tools have since been developed to identify the virus from bodily fluids and since the virus causes pneumonia, which results in lung inflammation, the presence of the virus can also be detected using medical imaging by expert radiologists. The success of each diagnostic method is measured by the hit rate for identifying Covid infections. However, the access for people to each diagnosis tool can be limited, depending on the geographic region and, since Covid treatment denotes a race against time, the diagnosis duration plays an important role. Hospitals with X-ray opportunities are widely distributed all over the world, so a method investigating lung X-ray images for possible Covid-19 infections would offer itself. Promising results have been achieved in the literature in automatically detecting the virus using medical images like CT scans and X-rays using supervised artificial neural network algorithms. One of the major drawbacks of supervised learning models is that they require enormous amounts of data to train, and generalize on new data. In this study, we develop a Swish activated, Instance and Batch normalized Residual U-Net GAN with dense blocks and skip connections to create synthetic and augmented data for training. The proposed GAN architecture, due to the presence of instance normalization and swish activation, can deal with the randomness of luminosity, that arises due to different sources of X-ray images better than the classical architecture and generate realistic-looking synthetic data. Also, the radiology equipment is not generally computationally efficient. They cannot efficiently run state-of-the-art deep neural networks such as DenseNet and ResNet effectively. Hence, we propose a novel CNN architecture that is 40% lighter and more accurate than state-of-the-art CNN networks. Multi-class classification of the three classes of chest X-rays (CXR), ie Covid-19, healthy and Pneumonia, is performed using the proposed model which had an extremely high test accuracy of 99.2% which has not been achieved in any previous studies in the literature. Based on the mentioned criteria for developing Corona infection diagnosis, in the present study, an Artificial Intelligence based method is proposed, resulting in a rapid diagnostic tool for Covid infections based on generative adversarial and convolutional neural networks. The benefit will be a high accuracy of lung infection identification with 99% accuracy. This could lead to a support tool that helps in rapid diagnosis, and an accessible Covid identification method using CXR images.


Assuntos
COVID-19 , Aprendizado Profundo , Pneumonia , Humanos , COVID-19/diagnóstico por imagem , SARS-CoV-2 , Inteligência Artificial
10.
Med Eng Phys ; 107: 103854, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36068039

RESUMO

We present a systematic and automated stepwise method to calibrate computational models of the spine. For that purpose, a sequential resection study on one lumbar specimen (L2-L5) was performed to obtain the individual contribution of the IVD, the facet joints and the ligaments to the kinematics of the spine. The experimental data was prepared for the calibration procedure in such manner that the FE model could reproduce the average motion of the 10 native spines from former cadaveric studies as well as replicate the proportional change in ROM after removal of a spinal structure obtained in this resection study. A Genetic Algorithm was developed to calibrate the properties of the intervertebral discs and facet joints. The calibration of each ligament was performed by a simple and novel technique that requires only one simulation to obtain its mechanical property. After calibration, the model was capable of reproducing the experimental results in all loading directions and resections.


Assuntos
Disco Intervertebral , Vértebras Lombares , Fenômenos Biomecânicos , Calibragem , Análise de Elementos Finitos , Humanos , Vértebras Lombares/cirurgia , Amplitude de Movimento Articular
11.
Comput Methods Programs Biomed ; 208: 106279, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34343743

RESUMO

BACKGROUND AND OBJECTIVE: The use of automated systems for image recognition is highly preferred for regenerative medicine applications to evaluate stem cell differentiation early in the culturing state with non-invasive methodologies instead of invasive counterparts. Bone marrow-derived mesenchymal stem cells (BMSCs) are able to differentiate into desired cell phenotypes, and thereby promise a proper cell source for tendon regeneration. The therapeutic success of stem cell therapy requires cellular characterization prior to the implantation of cells. The foremost problem is that traditional characterization techniques require cellular material which would be more useful for cell therapy, complex laboratory procedures, and human expertise. Convolutional neural networks (CNNs), a class of deep neural networks, have recently made great improvements in image-based classifications, recognition, and detection tasks. We, therefore, aim to develop a potential CNN model in order to recognize differentiated stem cells by learning features directly from image data of unlabelled cells. METHODS: The differentiation of bone marrow mesenchymal stem cells (BMSCs) into tenocytes was induced with the treatment of bone morphogenetic protein-12 (BMP-12). Following the treatment and incubation step, the phase-contrast images of cells were obtained and immunofluorescence staining has been applied to characterize the differentiated state of BMSCs. CNN models were developed and trained with the phase-contrast cell images. The comparison of CNN models was performed with respect to prediction performance and training time. Moreover, we have evaluated the effect of image enhancement method, data augmentation, and fine-tuning training strategy to increase classification accuracy of CNN models. The best model was integrated into a mobile application. RESULTS: All the CNN models can fit the biological data extracted from immunofluorescence characterization. CNN models enable the cell classification with satisfactory accuracies. The best result in terms of accuracy and training time is achieved by the model proposed based on Inception-ResNet V2 trained from scratch using image enhancement and data augmentation strategies (96.80%, 434.55 sec). CONCLUSION: Our study reveals that the CNN models show good performance by identifying stem cell differentiation. Importantly this technique provides a faster and real-time tool in comparison to traditional methods enabling the adjustment of culture conditions during cultivation to improve the yield of therapeutic stem cells.


Assuntos
Redes Neurais de Computação , Diferenciação Celular , Humanos
12.
Biomech Model Mechanobiol ; 19(3): 1055-1077, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31802293

RESUMO

Osteoarthritis-induced microstructural and compositional changes of articular cartilage affect its load-bearing capacity and the damage resistance. The aim of the present study is to analyse effects of the osteoarthritis-induced microstructural degradation on the damage behaviour of articular cartilages. A poro-visco-hyperelastic damage model is proposed within the theoretical framework of continuum mechanics to describe the deformation and damage behaviour of collagen fibrils and highly hydrated proteoglycan matrix in articular cartilages. An integral-type nonlocal algorithm is employed to overcome the mesh dependence of simulation results involving strain localization. 3D computational models for a normal cartilage and two osteoarthritic cartilages with different degeneration levels are developed to study the degradation of the damage resistance of articular cartilages. In addition, the present simulations take into account the alterations of collagen fibril networks as well as compositional changes of cartilage constituents at different osteoarthritic stages. The material parameters of the constitutive model are identified by comparing the computational results to unconfined compression tests. The simulation results of spherical indentation tests show that damage in the articular cartilage with high-stage osteoarthritis is much more significant than that in the normal cartilage under identical loadings. The proposed computational methods can be used for studying the relationship between the damage behaviour and the complex morphology of the collagen fibril networks in biomaterials.


Assuntos
Cartilagem Articular/fisiopatologia , Osteoartrite/fisiopatologia , Proteoglicanas/química , Algoritmos , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Biomimética , Cartilagem/fisiologia , Colágeno/química , Força Compressiva , Simulação por Computador , Elasticidade , Matriz Extracelular/metabolismo , Análise de Elementos Finitos , Humanos , Imageamento Tridimensional , Estresse Mecânico , Engenharia Tecidual , Viscosidade
13.
PLoS One ; 15(1): e0227553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923210

RESUMO

INTRODUCTION: Articular cartilage (AC) is a viscoelastic tissue with a limited regenerative capability because of the lack of vasculature. Mechanical stimulation contributes to the homeostasis of functional AC since it promotes the delivery of nutrients, cytokines and growth factors between the distant chondrocytes. We hypothesized that biomechanical stimulation might enhance mobilization of endogenous mesenchymal stem/stromal cells (MSCs) from neighboring niches as the bone marrow. AIM: This study aimed to introduce a bioreactor for inducing mobilization of MSCs from one compartment to another above by mechanical stimulation in vitro. METHODS: A novel mechanical system for evaluating mobilization of cells in a 3D context in vitro is presented. The system consists of a compression bioreactor able to induce loading on hydrogel-based scaffolds, custom-made software for settings management and data recording, and image based biological evaluation. Intermittent load was applied under a periodic regime with frequency of 0.3 Hz and unload phases of 10 seconds each 180 cycles over 24 hours. The mechanical stimulation acted on an alginate scaffold and a cell reservoir containing MSCs below it. The dynamic compression exerted amplitude of 200 µm as 10% strain regarding the original height of the scaffold. RESULTS: The bioreactor was able to stimulate the scaffolds and the cells for 24.4 (±1.7) hours, exerting compression with vertical displacements of 185.8 (±17.8) µm and a force-amplitude of 1.87 (±1.37; min 0.31, max 4.42) N. Our results suggest that continuous mechanical stimulation hampered the viability of the cells located at the cell reservoir when comparing to intermittent mechanical stimulation (34.4 ± 2.0% vs. 66.8 ± 5.9%, respectively). Functionalizing alginate scaffolds with laminin-521 (LN521) seemed to enhance the mobilization of cells from 48 (±21) to 194 (±39) cells/mm3 after applying intermittent mechanical loading. CONCLUSION: The bioreactor presented here was able to provide mechanical stimulation that seemed to induce the mobilization of MSCs into LN521-alginate scaffolds under an intermittent loading regime.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Alicerces Teciduais/química , Alginatos/química , Animais , Células da Medula Óssea/citologia , Técnicas de Cultura de Células/instrumentação , Sobrevivência Celular , Células Cultivadas , Força Compressiva , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Estresse Mecânico , Suínos
14.
Med Eng Phys ; 74: 58-64, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611181

RESUMO

Cell-free collagen scaffolds as cartilage substitute for small focal defects show promising results in first clinical studies. However, chondrocyte migration between scaffolds and the colonisation process of a cell-free implant is yet to be fully understood. We here focus on mechanobiological interdependencies between cell migration and mechanical stimulus in a 3D environment. We develop an in vitro model composed of a human chondrocyte-seeded collagen base and adjacent cell-free collagen type I scaffolds of varying collagen concentrations. Constructs are either cultured statically or dynamically under the influence of a physiological compression (0.5Hz, 0.5% initial strain). After 20 days we identify vital chondrocytes inside all collagen implants, proving that chondrocytes migrated from the underlying scaffold into the implants. Chondrocytes have not colonised the entire sample and are predominantly found in the bottom of the implant. In static culture conditions, a nearly equal cell number is found inside of all collagen scaffolds. In dynamic culture, the total amount of cells is increased by 30% to 320%, with the highest population in a commercial implant. Differences in cell population between the materials in dynamic culturing can be referred to differences in mechanical properties of the scaffolds, such as strain-rate insensitivity fostering the colonisation process.


Assuntos
Cartilagem Articular/citologia , Condrócitos/citologia , Teste de Materiais , Fenômenos Mecânicos , Engenharia Tecidual , Fenômenos Biomecânicos , Técnicas de Cultura de Células , Movimento Celular , Força Compressiva , Humanos
15.
Injury ; 50(2): 292-300, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30473370

RESUMO

OBJECTIVES: Improved fixation techniques with optional use of bone cements for implant augmentation have been developed to enhance stability and reduce complication rates after osteosynthesis of femoral neck fractures. This biomechanical study aimed to evaluate the effect of cement augmentation on implant anchorage and overall performance of screw-anchor fixation systems in unstable femoral neck fractures. METHODS: Ten pairs of human cadaveric femora were used to create standardized femoral neck fractures (Pauwels type 3 fractures; AO/OTA 31-B2) with comminution and were fixed by means of a rotationally stable screw-anchor (RoSA) system. The specimens were assigned pairwise to two groups and either augmented with PMMA-based cement (Group 1, augmented) or left without such augmentation (Group 2, control). Biomechanical testing, simulating physiological loading at four distinct load levels, was performed over 10.000 cycles for each level with the use of a multidimensional force-transducer system. Data was analysed by means of motion tracking. RESULTS: Stiffness, femoral head rotation, implant migration, femoral neck shortening, and failure load did not differ significantly between the two groups (p ≥ .10). For both groups, the main failure type was dislocation in the frontal plane with consecutive varus collapse). In the cement-augmented specimens, implant migration and femoral neck shortening were significantly dependent on bone mineral density (BMD), with higher values in osteoporotic bones. There was a correlation between failure load and BMD in cement-augmented specimens. CONCLUSION: In screw-anchor fixation of unstable femoral neck fractures, bone-cement augmentation seems to show no additional advantages in regard to stiffness, rotational stability, implant migration, resistance to fracture displacement, femoral neck shortening or failure load.


Assuntos
Fenômenos Biomecânicos/fisiologia , Cimentos Ósseos/uso terapêutico , Densidade Óssea/fisiologia , Fraturas do Colo Femoral/cirurgia , Fixação Interna de Fraturas/métodos , Teste de Materiais/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Parafusos Ósseos , Cadáver , Feminino , Fixação Interna de Fraturas/instrumentação , Humanos , Masculino , Pessoa de Meia-Idade , Resistência à Tração/fisiologia
16.
Clin Biomech (Bristol, Avon) ; 61: 112-119, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30551087

RESUMO

BACKGROUND: Posterior dynamic stabilization systems are developed to maintain the healthy biomechanics of the spine while providing stabilization. Numerous dynamic systems incorporate polycarbonate urethane with temperature- and moisture-dependent material properties. In the underlying study, a novel test rig is used to evaluate the biomechanical performance of a system containing polycarbonate urethane. METHODS: The test rig is composed of two hydraulic actuators. An environmental chamber, filled with water vapor at body temperature, is included in the set up. The translational and rotational degrees of freedom of vertebrae and pedicle screws are measured using a magnetic tracking system. The Transition® device is tested in five lumbar spines (L2-L5) of human cadavers. Pure moment tests are performed for flexion-extension, lateral bending, and axial rotation. Three test conditions are compared: 1. native specimens, 2. dynamic instrumentation at L4-L5, 3. dynamic instrumentation with decompression at L4-L5. FINDINGS: The ranges of motion, the centers of rotation, and the pedicle screw loosening are calculated and evaluated. During daily motions such as walking, the loads on the lumbar spine differ from the standardized test protocols. To allow a reproducible data evaluation for smaller deformations, all moment-rotation curves are parameterized using sigmoid functions. INTERPRETATION: In flexion-extension, the Transition® device provides the highest stiffening of the segment and the largest shift of the center of rotation. No shift in the center of rotation, and the smallest supporting effect on the segment is observed for axial rotation. In lateral bending, a mediate reduction of the range of motion is observed.


Assuntos
Equipamentos Ortopédicos , Cimento de Policarboxilato/química , Amplitude de Movimento Articular , Uretana/química , Idoso , Fenômenos Biomecânicos , Cadáver , Descompressão Cirúrgica/instrumentação , Desenho de Equipamento , Feminino , Humanos , Vértebras Lombares/cirurgia , Região Lombossacral/cirurgia , Masculino , Pessoa de Meia-Idade , Parafusos Pediculares , Rotação , Fusão Vertebral/instrumentação
17.
J Mech Behav Biomed Mater ; 82: 1-8, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29554633

RESUMO

The underlying research work introduces a study of the mechanical properties of polycarbonate urethane (PCU), used in the construction of various medical devices. This comprises the discussion of a suitable material model, the application of elemental experiments to identify the related parameters and the numerical simulation of the applied experiments in order to calibrate and validate the mathematical model. In particular, the model of choice for the simulation of PCU response is the non-linear viscoelastic Bergström-Boyce material model, applied in the finite-element (FE) package Abaqus®. For the parameter identification, uniaxial tension and unconfined compression tests under in-laboratory physiological conditions were carried out. The geometry of the samples together with the applied loadings were simulated in Abaqus®, to insure the suitability of the modelling approach. The obtained parameters show a very good agreement between the numerical and the experimental results.


Assuntos
Elasticidade , Equipamentos e Provisões , Cimento de Policarboxilato/química , Uretana/química , Simulação por Computador , Teste de Materiais , Reologia , Estresse Mecânico , Viscosidade
18.
Biomed Tech (Berl) ; 63(4): 341-347, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28448270

RESUMO

In vitro pure moment spine tests are commonly used to analyse surgical implants in cadaveric models. Most of the tests are performed at room temperature. However, some new dynamic instrumentation devices and soft tissues show temperature-dependent material properties. Therefore, the aim of this study is to develop a new test rig, which allows applying pure moments on lumbar spine specimens in a vapour-filled chamber at body temperature. As no direct sight is given in the vapour-filled closed chamber, a magnetic tracking (MT) system with implantable receivers was used. Four human cadaveric lumbar spines (L2-L5) were tested in a vapour atmosphere at body temperature with a native and rigid instrumented group. In conclusion, the experimental set-up allows vertebral motion tracking of multiple functional spinal units (FSUs) in a moisture environment at body temperature.


Assuntos
Vértebras Lombares , Amplitude de Movimento Articular/fisiologia , Fusão Vertebral/métodos , Humanos
19.
Med Eng Phys ; 39: 106-112, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836574

RESUMO

In biomedical applications bioreactors are used, which are able to apply mechanical loadings under cultivation conditions on biological tissues. However, complex mechanobiological evolutions, such as the dependency between mechanical properties and cell activity, depend strongly on the applied loading conditions. This requires correct physiological movements and loadings in bioreactors. The aim of the present study is to develop bioreactors, in which native and artificial biological tissues can be cultivated under physiological conditions in knee joints and spinal motion segments. However, in such complex systems, where motions with different degrees of freedom are applied to whole body parts, it is necessary to investigate elements of joints and spinal parts separately. Consequently, two further bioreactors for investigating tendons and cartilage specimens are proposed additionally. The study is complemented by experimental and numerical examples with emphasis on medical and engineering applications, such as biomechanical properties of cartilage replacement materials, injured tendons, and intervertebral discs.


Assuntos
Reatores Biológicos , Movimento , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Disco Intervertebral/citologia , Disco Intervertebral/fisiologia , Articulação do Joelho/citologia , Articulação do Joelho/fisiologia , Estresse Mecânico , Tendões/citologia , Tendões/fisiologia , Engenharia Tecidual , Caminhada
20.
Clin Biomech (Bristol, Avon) ; 44: 67-74, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28342975

RESUMO

BACKGROUND: The purpose of this study was to investigate the range-of-motion after posterior polyetheretherketone-based rod stabilisation combined with a dynamic silicone hinge in order to compare it with titanium rigid stabilisation. METHODS: Five human cadaveric lumbar spines with four vertebra each (L2 to L5) were tested in a temperature adjustable spine-testing set-up in four trials: (1) native measurement; (2) kinematics after rigid monosegmental titanium rod instrumentation with anterior intervertebral bracing of the segment L4/5; (3) kinematics after hybrid posterior polyetheretherketone rod instrumentation combined with a silicone hinge within the adjacent level (L3/4) and (4) kinematics after additional decompression with laminectomy of L4 and bilateral resection of the inferior articular processes (L3). During all steps, the specimens were loaded quasi-statically with 1°/s with pure moment up to 7.5Nm in flexion/extension, lateral bending and axial rotation. FINDINGS: In comparison to the native cadaveric spine, both the titanium device and polyetheretherketone-based device reduce the range-of-motion within the level L4/5 significantly (flexion/extension: reduction of 77%, p<0.001; lateral bending: reduction of 62%, p<0.001; axial rotation: reduction of 71%, p<0.001). There was a clear stabilisation effect after hybrid-instrumentation within the level L3/4, especially in flexion/extension (64%, p<0.001) and lateral bending (62%, p<0.001) but without any effect on the axial rotation. Any temperature dependency has not been observed. INTERPRETATION: Surprisingly, the hybrid device compensates for laminectomy L4 and destabilising procedure within the level L3/4 in comparison to other implants. Further studies must be performed to show its effectiveness regarding the adjacent segment instability.


Assuntos
Cetonas , Vértebras Lombares/fisiopatologia , Dispositivos de Fixação Ortopédica , Polietilenoglicóis , Amplitude de Movimento Articular/fisiologia , Fusão Vertebral/instrumentação , Estenose Espinal/fisiopatologia , Titânio , Idoso , Idoso de 80 Anos ou mais , Benzofenonas , Fenômenos Biomecânicos , Cadáver , Descompressão Cirúrgica , Feminino , Humanos , Laminectomia , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Polímeros , Rotação , Estenose Espinal/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA