Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(2): 1677-1691, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785198

RESUMO

In this work, we analyze the interference patterns measured in lab-based dual-phase grating interferometry and for the first time explain the spatial dependencies of the measured interference patterns and the large visibility deviations between the theoretical prediction and the experimental results. To achieve this, a simulator based on wave propagation is developed. This work proves that the experimental results can be simulated with high accuracy by including the effective grating thickness profile induced by the cone-beam geometry, the measured detector response function and a non-ideal grating shape. With the comprehensive understanding of dual-phase grating interferometry, this provides the foundations for a more efficient and accurate algorithm to retrieve sample's structure information, and the realistic simulator is a useful tool for optimizing the set-up.

2.
Commun Phys ; 6(1): 288, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665412

RESUMO

Laser-plasma accelerators are compact linear accelerators based on the interaction of high-power lasers with plasma to form accelerating structures up to 1000 times smaller than standard radiofrequency cavities, and they come with an embedded X-ray source, namely betatron source, with unique properties: small source size and femtosecond pulse duration. A still unexplored possibility to exploit the betatron source comes from combining it with imaging methods able to encode multiple information like transmission and phase into a single-shot acquisition approach. In this work, we combine edge illumination-beam tracking (EI-BT) with a betatron X-ray source and present the demonstration of multimodal imaging (transmission, refraction, and scattering) with a compact light source down to the femtosecond timescale. The advantage of EI-BT is that it allows multimodal X-ray imaging technique, granting access to transmission, refraction and scattering signals from standard low-coherence laboratory X-ray sources in a single shot.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA