Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37510089

RESUMO

Deep neural networks are complex machine learning models that have shown promising results in analyzing high-dimensional data such as those collected from medical examinations. Such models have the potential to provide fast and accurate medical diagnoses. However, the high complexity makes deep neural networks and their predictions difficult to understand. Providing model explanations can be a way of increasing the understanding of "black box" models and building trust. In this work, we applied transfer learning to develop a deep neural network to predict sex from electrocardiograms. Using the visual explanation method Grad-CAM, heat maps were generated from the model in order to understand how it makes predictions. To evaluate the usefulness of the heat maps and determine if the heat maps identified electrocardiogram features that could be recognized to discriminate sex, medical doctors provided feedback. Based on the feedback, we concluded that, in our setting, this mode of explainable artificial intelligence does not provide meaningful information to medical doctors and is not useful in the clinic. Our results indicate that improved explanation techniques that are tailored to medical data should be developed before deep neural networks can be applied in the clinic for diagnostic purposes.

2.
Sci Data ; 10(1): 260, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37156762

RESUMO

A manual assessment of sperm motility requires microscopy observation, which is challenging due to the fast-moving spermatozoa in the field of view. To obtain correct results, manual evaluation requires extensive training. Therefore, computer-aided sperm analysis (CASA) has become increasingly used in clinics. Despite this, more data is needed to train supervised machine learning approaches in order to improve accuracy and reliability in the assessment of sperm motility and kinematics. In this regard, we provide a dataset called VISEM-Tracking with 20 video recordings of 30 seconds (comprising 29,196 frames) of wet semen preparations with manually annotated bounding-box coordinates and a set of sperm characteristics analyzed by experts in the domain. In addition to the annotated data, we provide unlabeled video clips for easy-to-use access and analysis of the data via methods such as self- or unsupervised learning. As part of this paper, we present baseline sperm detection performances using the YOLOv5 deep learning (DL) model trained on the VISEM-Tracking dataset. As a result, we show that the dataset can be used to train complex DL models to analyze spermatozoa.


Assuntos
Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Humanos , Masculino , Reprodutibilidade dos Testes , Gravação em Vídeo
3.
Sci Rep ; 13(1): 22946, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135766

RESUMO

Meibomian gland dysfunction is the most common cause of dry eye disease and leads to significantly reduced quality of life and social burdens. Because meibomian gland dysfunction results in impaired function of the tear film lipid layer, studying the expression of tear proteins might increase the understanding of the etiology of the condition. Machine learning is able to detect patterns in complex data. This study applied machine learning to classify levels of meibomian gland dysfunction from tear proteins. The aim was to investigate proteomic changes between groups with different severity levels of meibomian gland dysfunction, as opposed to only separating patients with and without this condition. An established feature importance method was used to identify the most important proteins for the resulting models. Moreover, a new method that can take the uncertainty of the models into account when creating explanations was proposed. By examining the identified proteins, potential biomarkers for meibomian gland dysfunction were discovered. The overall findings are largely confirmatory, indicating that the presented machine learning approaches are promising for detecting clinically relevant proteins. While this study provides valuable insights into proteomic changes associated with varying severity levels of meibomian gland dysfunction, it should be noted that it was conducted without a healthy control group. Future research could benefit from including such a comparison to further validate and extend the findings presented here.


Assuntos
Síndromes do Olho Seco , Disfunção da Glândula Tarsal , Humanos , Glândulas Tarsais/metabolismo , Proteômica , Qualidade de Vida , Síndromes do Olho Seco/metabolismo , Lágrimas/metabolismo
4.
Ocul Surf ; 23: 74-86, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843999

RESUMO

Dry eye disease (DED) has a prevalence of between 5 and 50%, depending on the diagnostic criteria used and population under study. However, it remains one of the most underdiagnosed and undertreated conditions in ophthalmology. Many tests used in the diagnosis of DED rely on an experienced observer for image interpretation, which may be considered subjective and result in variation in diagnosis. Since artificial intelligence (AI) systems are capable of advanced problem solving, use of such techniques could lead to more objective diagnosis. Although the term 'AI' is commonly used, recent success in its applications to medicine is mainly due to advancements in the sub-field of machine learning, which has been used to automatically classify images and predict medical outcomes. Powerful machine learning techniques have been harnessed to understand nuances in patient data and medical images, aiming for consistent diagnosis and stratification of disease severity. This is the first literature review on the use of AI in DED. We provide a brief introduction to AI, report its current use in DED research and its potential for application in the clinic. Our review found that AI has been employed in a wide range of DED clinical tests and research applications, primarily for interpretation of interferometry, slit-lamp and meibography images. While initial results are promising, much work is still needed on model development, clinical testing and standardisation.


Assuntos
Síndromes do Olho Seco , Oftalmologia , Inteligência Artificial , Síndromes do Olho Seco/diagnóstico , Humanos , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA