Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
J Neurochem ; 167(5): 711-715, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37859335

RESUMO

Frode Fonnum died unexpectedly on 26th April 2023, at 86 years of age. He was a tower of strength-a primeval force-in neuroscience, neurochemistry and toxicology. His highly cited publications, comprised salient evidence for GABA and glutamate as brain neurotransmitters. He served as an expert, and as an organizer, including of European research cooperation and as President of the International Society for Neurochemistry (ISN). Photo credit: Per Kristian Opstad.


Assuntos
Encéfalo , Neuroquímica , Neurotransmissores , Ácido Glutâmico
2.
Physiol Rev ; 95(3): 695-726, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26084688

RESUMO

Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter. When stimulated by neurons or other cells, neuroglial cells release gliotransmitters by exocytosis, similar to neurotransmitter release from nerve endings, or by carrier-mediated transport or channel flux through the plasma membrane. Gliotransmitters include the common neurotransmitters glutamate and GABA, the nonstandard amino acid d-serine, the high-energy phosphate ATP, and l-lactate. The latter molecule is a "buffer" between glycolytic and oxidative metabolism as well as a signaling substance recently shown to act on specific lactate receptors in the brain. Complementing neurotransmission at a synapse, neuroglial transmission often implies diffusion of the transmitter over a longer distance and concurs with the concept of volume transmission. Transmission from glia modulates synaptic neurotransmission based on energetic and other local conditions in a volume of tissue surrounding the individual synapse. Neuroglial transmission appears to contribute significantly to brain functions such as memory, as well as to prevalent neuropathologies.


Assuntos
Encéfalo/metabolismo , Comunicação Celular , Neuroglia/metabolismo , Transdução de Sinais , Trifosfato de Adenosina/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Ácido Glutâmico/metabolismo , Humanos , Ácido Láctico/metabolismo , Microglia/metabolismo , Oligodendroglia/metabolismo , Serina/metabolismo , Ácido gama-Aminobutírico/metabolismo
3.
Int J Mol Sci ; 21(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899645

RESUMO

The volume, composition, and movement of the cerebrospinal fluid (CSF) are important for brain physiology, pathology, and diagnostics. Nevertheless, few studies have focused on the main structure that produces CSF, the choroid plexus (CP). Due to the presence of monocarboxylate transporters (MCTs) in the CP, changes in blood and brain lactate levels are reflected in the CSF. A lactate receptor, the hydroxycarboxylic acid receptor 1 (HCA1), is present in the brain, but whether it is located in the CP or in other periventricular structures has not been studied. Here, we investigated the distribution of HCA1 in the cerebral ventricular system using monomeric red fluorescent protein (mRFP)-HCA1 reporter mice. The reporter signal was only detected in the dorsal part of the third ventricle, where strong mRFP-HCA1 labeling was present in cells of the CP, the tela choroidea, and the neuroepithelial ventricular lining. Co-labeling experiments identified these cells as fibroblasts (in the CP, the tela choroidea, and the ventricle lining) and ependymal cells (in the tela choroidea and the ventricle lining). Our data suggest that the HCA1-containing fibroblasts and ependymal cells have the ability to respond to alterations in CSF lactate in body-brain signaling, but also as a sign of neuropathology (e.g., stroke and Alzheimer's disease biomarker).


Assuntos
Plexo Corióideo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Terceiro Ventrículo/metabolismo , Animais , Encéfalo/metabolismo , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/fisiologia , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/fisiologia , Fibroblastos/metabolismo , Humanos , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Terceiro Ventrículo/fisiologia
4.
Neurochem Res ; 44(1): 22-37, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30027365

RESUMO

A ketogenic diet (KD; high-fat, low-carbohydrate) can benefit refractory epilepsy, but underlying mechanisms are unknown. We used mice inducibly expressing a mutated form of the mitochondrial DNA repair enzyme UNG1 (mutUNG1) to cause progressive mitochondrial dysfunction selectively in forebrain neurons. We examined the levels of mRNAs and proteins crucial for mitochondrial biogenesis and dynamics. We show that hippocampal pyramidal neurons in mutUNG1 mice, as well as cultured rat hippocampal neurons and human fibroblasts with H2O2 induced oxidative stress, improve markers of mitochondrial biogenesis, dynamics and function when fed on a KD, and when exposed to the ketone body ß-hydroxybutyrate, respectively, by upregulating PGC1α, SIRT3 and UCP2, and (in cultured cells) increasing the oxygen consumption rate (OCR) and the NAD+/NADH ratio. The mitochondrial level of UCP2 was significantly higher in the perikarya and axon terminals of hippocampus CA1 pyramidal neurons in KD treated mutUNG1 mice compared with mutUNG1 mice fed a standard diet. The ß-hydroxybutyrate receptor GPR109a (HCAR2), but not the structurally closely related lactate receptor GPR81 (HCAR1), was upregulated in mutUNG1 mice on a KD, suggesting a selective influence of KD on ketone body receptor mechanisms. We conclude that progressive mitochondrial dysfunction in mutUNG1 expressing mice causes oxidative stress, and that exposure of animals to KD, or of cells to ketone body in vitro, elicits compensatory mechanisms acting to augment mitochondrial mass and bioenergetics via the PGC1α-SIRT3-UCP2 axis (The compensatory processes are overwhelmed in the mutUNG1 mice by all the newly formed mitochondria being dysfunctional).


Assuntos
Dieta Cetogênica/tendências , Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Sirtuína 3/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Células Cultivadas , Dieta Cetogênica/métodos , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Corpos Cetônicos/metabolismo , Camundongos , Camundongos Transgênicos , Biogênese de Organelas , Ratos
5.
Biochem J ; 475(4): 749-758, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339464

RESUMO

Propionic acidemia is the accumulation of propionate in blood due to dysfunction of propionyl-CoA carboxylase. The condition causes lethargy and striatal degeneration with motor impairment in humans. How propionate exerts its toxic effect is unclear. Here, we show that intravenous administration of propionate causes dose-dependent propionate accumulation in the brain and transient lethargy in mice. Propionate, an inhibitor of histone deacetylase, entered GABAergic neurons, as could be seen from increased neuronal histone H4 acetylation in the striatum and neocortex. Propionate caused an increase in GABA (γ-amino butyric acid) levels in the brain, suggesting inhibition of GABA breakdown. In vitro propionate inhibited GABA transaminase with a Ki of ∼1 mmol/l. In isolated nerve endings, propionate caused increased release of GABA to the extracellular fluid. In vivo, propionate reduced cerebral glucose metabolism in both striatum and neocortex. We conclude that propionate-induced inhibition of GABA transaminase causes accumulation of GABA in the brain, leading to increased extracellular GABA concentration, which inhibits neuronal activity and causes lethargy. Propionate-mediated inhibition of neuronal GABA transaminase, an enzyme of the inner mitochondrial membrane, indicates entry of propionate into neuronal mitochondria. However, previous work has shown that neurons are unable to metabolize propionate oxidatively, leading us to conclude that propionyl-CoA synthetase is probably absent from neuronal mitochondria. Propionate-induced inhibition of energy metabolism in GABAergic neurons may render the striatum, in which >90% of the neurons are GABAergic, particularly vulnerable to degeneration in propionic acidemia.


Assuntos
4-Aminobutirato Transaminase/antagonistas & inibidores , Neurônios GABAérgicos/efeitos dos fármacos , Letargia/metabolismo , Propionatos/administração & dosagem , Acidemia Propiônica/metabolismo , 4-Aminobutirato Transaminase/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Neurônios GABAérgicos/metabolismo , Glucose/metabolismo , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases , Humanos , Letargia/induzido quimicamente , Letargia/fisiopatologia , Metilmalonil-CoA Descarboxilase/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Neocórtex/patologia , Acidemia Propiônica/induzido quimicamente , Acidemia Propiônica/fisiopatologia , Ácido gama-Aminobutírico/metabolismo
6.
Hippocampus ; 26(2): 229-45, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26286893

RESUMO

Detailed knowledge about the neural circuitry connecting the hippocampus and entorhinal cortex is necessary to understand how this system contributes to spatial navigation and episodic memory. The two principal cell types of the dentate gyrus, mossy cells and granule cells, are interconnected in a positive feedback loop, by which mossy cells can influence information passing from the entorhinal cortex via granule cells to hippocampal pyramidal cells. Mossy cells, like CA3 pyramidal cells, are characterized by thorny excrescences on their proximal dendrites, postsynaptic to giant terminals of granule cell axons. In addition to disynaptic input from the entorhinal cortex and perforant path via granule cells, mossy cells may also receive monosynaptic input from the perforant path via special dendrites ascending to the molecular layer. We here report qualitative and quantitative descriptions of Golgi-stained hippocampal mossy cells in mink, based on light microscopic observations and three-dimensional reconstructions. The main focus is on the location, branching pattern, and length of dendrites, particularly those ascending to the granular and molecular layers. In mink, the latter dendrites are more numerous than in rat, but fewer than in primates. They form on average 12% (and up to 29%) of the total dendritic length, and appear to cover the terminal fields of both the lateral and medial perforant paths. In further contrast to rat, the main mossy cell dendrites in mink branch more extensively with distal dendrites encroaching upon the CA3 field. The dendritic arbors extend both along and across the septotemporal axis of the dentate gyrus, not conforming to the lamellar pattern of the hippocampus. The findings suggest that the afferent input to the mossy cells becomes more complex in species closer to primates.


Assuntos
Dendritos/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Animais , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Vison , Vias Neurais/citologia , Vias Neurais/fisiologia
7.
Neurochem Res ; 41(6): 1229-36, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26677077

RESUMO

In retina, like in brain, lactate equilibrates across cell membranes via monocarboxylate transporters and in the extracellular space by diffusion, forming a basis for the action of lactate as a transmitter of metabolic signals. In the present paper, we argue that the lactate receptor GPR81, also known as HCAR1, may contribute importantly to the control of retinal cell functions in health and disease. GPR81, a G-protein coupled receptor, is known to downregulate cAMP both in adipose and nervous tissue. The receptor also acts through other down-stream mechanisms to control functions, such as excitability, metabolism and inflammation. Recent publications predict effects of the lactate receptor on neurodegeneration. Neurodegenerative diseases in retina, where the retinal ganglion cells die, notably glaucoma and diabetic retinopathy, may be linked to disturbed lactate homeostasis. Pilot studies reveal high GPR81 mRNA in retina and indicate GPR81 localization in Müller cells and retinal ganglion cells. Moreover, monocarboxylate transporters are expressed in retinal cells. We envision that lactate receptors and transporters could be useful future targets of novel therapeutic strategies to protect neurons and prevent or counteract glaucoma as well as other retinal diseases.


Assuntos
Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Retina/fisiologia , Doenças Retinianas/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Humanos , Retina/patologia , Doenças Retinianas/patologia , Células Ganglionares da Retina/patologia
8.
Am J Physiol Heart Circ Physiol ; 309(3): H434-49, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26055793

RESUMO

Cardiac mitochondrial dysfunction has been implicated in heart failure of diverse etiologies. Generalized mitochondrial disease also leads to cardiomyopathy with various clinical manifestations. Impaired mitochondrial homeostasis may over time, such as in the aging heart, lead to cardiac dysfunction. Mitochondrial DNA (mtDNA), close to the electron transport chain and unprotected by histones, may be a primary pathogenetic site, but this is not known. Here, we test the hypothesis that cumulative damage of cardiomyocyte mtDNA leads to cardiomyopathy and heart failure. Transgenic mice with Tet-on inducible, cardiomyocyte-specific expression of a mutant uracil-DNA glycosylase 1 (mutUNG1) were generated. The mutUNG1 is known to remove thymine in addition to uracil from the mitochondrial genome, generating apyrimidinic sites, which obstruct mtDNA function. Following induction of mutUNG1 in cardiac myocytes by administering doxycycline, the mice developed hypertrophic cardiomyopathy, leading to congestive heart failure and premature death after ∼2 mo. The heart showed reduced mtDNA replication, severely diminished mtDNA transcription, and suppressed mitochondrial respiration with increased Pgc-1α, mitochondrial mass, and antioxidative defense enzymes, and finally failing mitochondrial fission/fusion dynamics and deteriorating myocardial contractility as the mechanism of heart failure. The approach provides a model with induced cardiac-restricted mtDNA damage for investigation of mtDNA-based heart disease.


Assuntos
Dano ao DNA , DNA Mitocondrial/metabolismo , Insuficiência Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Animais , Insuficiência Cardíaca/genética , Camundongos , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
9.
J Neurosci Res ; 93(7): 1045-55, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25881750

RESUMO

We have proposed that lactate is a "volume transmitter" in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes the cerebral neocortex and the hippocampus, where it can be stimulated by physiological concentrations of lactate and by the HCAR1 agonist 3,5-dihydroxybenzoate to reduce cAMP levels. Cerebral HCAR1 is concentrated on the postsynaptic membranes of excitatory synapses and also is enriched at the blood-brain barrier. In synaptic spines and in adipocytes, HCAR1 immunoreactivity is also located on subplasmalemmal vesicular organelles, suggesting trafficking to and from the plasma membrane. Through activation of HCAR1, lactate can act as a volume transmitter that links neuronal activity, cerebral blood flow, energy metabolism, and energy substrate availability, including a glucose- and glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress, and schizophrenia and in the deposition of phosphorylated tau protein in Alzheimer's disease. HCAR1 could serve to ameliorate these conditions and might also act through downstream mechanisms other than cAMP. Lactate exits cells through monocarboxylate transporters in an equilibrating manner and through astrocyte anion channels activated by depolarization. In addition to locally produced lactate, lactate produced by exercising muscle as well as exogenous HCAR1 agonists, e.g., from fruits and berries, might activate the receptor on cerebral blood vessels and brain cells.


Assuntos
Encéfalo/metabolismo , Ácido Láctico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/citologia , Humanos
10.
Cereb Cortex ; 24(10): 2784-95, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23696276

RESUMO

The G-protein-coupled lactate receptor, GPR81 (HCA1), is known to promote lipid storage in adipocytes by downregulating cAMP levels. Here, we show that GPR81 is also present in the mammalian brain, including regions of the cerebral neocortex and hippocampus, where it can be activated by physiological concentrations of lactate and by the specific GPR81 agonist 3,5-dihydroxybenzoate to reduce cAMP. Cerebral GPR81 is concentrated on the synaptic membranes of excitatory synapses, with a postsynaptic predominance. GPR81 is also enriched at the blood-brain-barrier: the GPR81 densities at endothelial cell membranes are about twice the GPR81 density at membranes of perivascular astrocytic processes, but about one-seventh of that on synaptic membranes. There is only a slight signal in perisynaptic processes of astrocytes. In synaptic spines, as well as in adipocytes, GPR81 immunoreactivity is located on subplasmalemmal vesicular organelles, suggesting trafficking of the protein to and from the plasma membrane. The results indicate roles of lactate in brain signaling, including a neuronal glucose and glycogen saving response to the supply of lactate. We propose that lactate, through activation of GPR81 receptors, can act as a volume transmitter that links neuronal activity, cerebral energy metabolism and energy substrate availability.


Assuntos
Encéfalo/metabolismo , Ácido Láctico/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adipócitos/metabolismo , Animais , Astrócitos/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/ultraestrutura , Cerebelo/metabolismo , Cerebelo/ultraestrutura , AMP Cíclico/metabolismo , Metabolismo Energético , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Ácido Láctico/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , RNA Mensageiro/metabolismo , Ratos Wistar , Receptores Acoplados a Proteínas G/análise , Sinapses/metabolismo , Transmissão Sináptica
11.
Artigo em Inglês | MEDLINE | ID: mdl-38289789

RESUMO

Unhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations. The inaugural Norway-UK joint meeting on aging and dementia gathered leading experts on aging and dementia from the 2 nations to share their latest discoveries in related fields. Since aging is an international challenge, and to foster collaborations, we also invited leading scholars from 11 additional countries to join this event. This report provides a summary of the conference, highlighting recent progress on molecular aging mechanisms, genetic risk factors, DNA damage and repair, mitophagy, autophagy, as well as progress on a series of clinical trials (eg, using NAD+ precursors). The meeting facilitated dialogue among policymakers, administrative leaders, researchers, and clinical experts, aiming to promote international research collaborations and to translate findings into clinical applications and interventions to advance healthy aging.


Assuntos
Envelhecimento , Demência , Humanos , Idoso , Longevidade , Demência/prevenção & controle , Demência/epidemiologia , Reino Unido , Noruega
13.
Neuron ; 111(23): 3745-3764.e7, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37776854

RESUMO

Leptomeninges, consisting of the pia mater and arachnoid, form a connective tissue investment and barrier enclosure of the brain. The exact nature of leptomeningeal cells has long been debated. In this study, we identify five molecularly distinct fibroblast-like transcriptomes in cerebral leptomeninges; link them to anatomically distinct cell types of the pia, inner arachnoid, outer arachnoid barrier, and dural border layer; and contrast them to a sixth fibroblast-like transcriptome present in the choroid plexus and median eminence. Newly identified transcriptional markers enabled molecular characterization of cell types responsible for adherence of arachnoid layers to one another and for the arachnoid barrier. These markers also proved useful in identifying the molecular features of leptomeningeal development, injury, and repair that were preserved or changed after traumatic brain injury. Together, the findings highlight the value of identifying fibroblast transcriptional subsets and their cellular locations toward advancing the understanding of leptomeningeal physiology and pathology.


Assuntos
Aracnoide-Máter , Meninges , Camundongos , Animais , Aracnoide-Máter/anatomia & histologia , Pia-Máter , Plexo Corióideo , Encéfalo
15.
Brain Plast ; 8(2): 169-172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36721391

RESUMO

 This is a summary of the 2022 Nansen Neuroscience Lectures. On 10 October 2022, Professors Henriette van Praag and David Gems gave the 2022 Nansen Neuroscience Lectures on the theme "Is ageing inevitable?" in the Norwegian Academy of Science and Letters, Oslo, Norway. While van Praag gave a lecture entitled "The benefits of exercise for brain function", Gems gave the 2nd lecture discussing "What causes ageing? Lessons from The Worm". Understanding the fundamental mechanisms of ageing will pave the way to the development of future interventions to pre-empt the development of the diseases, including Alzheimer's disease and other dementias, of later life.

17.
Acta Physiol (Oxf) ; 231(3): e13587, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33244894

RESUMO

AIM: Adult neurogenesis occurs in two major niches in the brain: the subgranular zone of the hippocampal formation and the ventricular-subventricular zone. Neurogenesis in both niches is reduced in ageing and neurological disease involving dementia. Exercise can rescue memory by enhancing hippocampal neurogenesis, but whether exercise affects adult neurogenesis in the ventricular-subventricular zone remains unresolved. Previously, we reported that exercise induces angiogenesis through activation of the lactate receptor HCA1. The aim of the present study is to investigate HCA1 -dependent effects on neurogenesis in the two main neurogenic niches. METHODS: Wild-type and HCA1 knock-out mice received high intensity interval exercise, subcutaneous injections of L-lactate, or saline injections, five days per week for seven weeks. Well-established markers for proliferating cells (Ki-67) and immature neurons (doublecortin), were used to investigate neurogenesis in the subgranular zone and the ventricular-subventricular zone. RESULTS: We demonstrated that neurogenesis in the ventricular-subventricular zone is enhanced by HCA1 activation: Treatment with exercise or lactate resulted in increased neurogenesis in wild-type, but not in HCA1 knock-out mice. In the subgranular zone, neurogenesis was induced by exercise in both genotypes, but unaffected by lactate treatment. CONCLUSION: Our study demonstrates that neurogenesis in the two main neurogenic niches in the brain is regulated differently: Neurogenesis in both niches was induced by exercise, but only in the ventricular-subventricular zone was neurogenesis induced by lactate through HCA1 activation. This opens for a role of HCA1 in the physiological control of neurogenesis, and potentially in counteracting age-related cognitive decline.


Assuntos
Ventrículos Laterais , Células-Tronco Neurais , Animais , Proliferação de Células , Ácido Láctico , Camundongos , Camundongos Knockout , Neurogênese
18.
Cereb Cortex ; 19(1): 241-8, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18502731

RESUMO

Vesicular glutamate transporters (VGLUTs) 1 and 2 are expressed by neurons generally accepted to release glutamate as a neurotransmitter, whereas VGLUT3 appears in populations usually associated with a different classical transmitter. We now demonstrate VGLUT2 as well as the vesicular GABA transporter (VGAT) in a subset of presynaptic terminals in the dentate gyrus of the rat hippocampal formation. The terminals are distributed in a characteristic band overlapping with the outer part of the granule cell layer and the inner zone of the molecular layer. Within the terminals, which make asymmetric as well as symmetric synapses onto the somatodendritic compartment of the dentate granule cells, the 2 transporters localize to distinct populations of synaptic vesicles. Moreover, the axons forming these terminals originate in the supramammillary nucleus (SuM). Our data reconcile previous apparently conflicting reports on the physiology of the dentate afferents from SuM and demonstrate that both glutamate and GABA may be released from a single nerve terminal.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Ratos , Ratos Wistar , Distribuição Tecidual
19.
Cereb Cortex ; 19(3): 511-23, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18550596

RESUMO

The synapsin proteins have different roles in excitatory and inhibitory synaptic terminals. We demonstrate a differential role between types of excitatory terminals. Structural and functional aspects of the hippocampal mossy fiber (MF) synapses were studied in wild-type (WT) mice and in synapsin double-knockout mice (DKO). A severe reduction in the number of synaptic vesicles situated more than 100 nm away from the presynaptic membrane active zone was found in the synapsin DKO animals. The ultrastructural level gave concomitant reduction in F-actin immunoreactivity observed at the periactive endocytic zone of the MF terminals. Frequency facilitation was normal in synapsin DKO mice at low firing rates (approximately 0.1 Hz) but was impaired at firing rates within the physiological range (approximately 2 Hz). Synapses made by associational/commissural fibers showed comparatively small frequency facilitation at the same frequencies. Synapsin-dependent facilitation in MF synapses of WT mice was attenuated by blocking F-actin polymerization with cytochalasin B in hippocampal slices. Synapsin III, selectively seen in MF synapses, is enriched specifically in the area adjacent to the synaptic cleft. This may underlie the ability of synapsin III to promote synaptic depression, contributing to the reduced frequency facilitation observed in the absence of synapsins I and II.


Assuntos
Actinas/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Sinapses/fisiologia , Sinapsinas/fisiologia , Actinas/deficiência , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos , Camundongos Knockout , Fibras Musgosas Hipocampais/ultraestrutura , Sinapses/ultraestrutura , Sinapsinas/deficiência
20.
Cereb Cortex ; 19(5): 1092-106, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-18832333

RESUMO

Glutamate mediates several modes of neurotransmission in the central nervous system including recently discovered retrograde signaling from neuronal dendrites. We have previously identified the system N transporter SN1 as being responsible for glutamine efflux from astroglia and proposed a system A transporter (SAT) in subsequent transport of glutamine into neurons for neurotransmitter regeneration. Here, we demonstrate that SAT2 expression is primarily confined to glutamatergic neurons in many brain regions with SAT2 being predominantly targeted to the somatodendritic compartments in these neurons. SAT2 containing dendrites accumulate high levels of glutamine. Upon electrical stimulation in vivo and depolarization in vitro, glutamine is readily converted to glutamate in activated dendritic subsegments, suggesting that glutamine sustains release of the excitatory neurotransmitter via exocytosis from dendrites. The system A inhibitor MeAIB (alpha-methylamino-iso-butyric acid) reduces neuronal uptake of glutamine with concomitant reduction in intracellular glutamate concentrations, indicating that SAT2-mediated glutamine uptake can be a prerequisite for the formation of glutamate. Furthermore, MeAIB inhibited retrograde signaling from pyramidal cells in layer 2/3 of the neocortex by suppressing inhibitory inputs from fast-spiking interneurons. In summary, we demonstrate that SAT2 maintains a key metabolic glutamine/glutamate balance underpinning retrograde signaling by dendritic release of the neurotransmitter glutamate.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Dendritos/fisiologia , Ácido Glutâmico/metabolismo , Neocórtex/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Sistema A de Transporte de Aminoácidos/imunologia , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Especificidade de Anticorpos , Células Cultivadas , Feminino , Glutamina/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Técnicas Imunoenzimáticas , Masculino , Neocórtex/citologia , Técnicas de Patch-Clamp , Gravidez , Células Piramidais/fisiologia , Células Piramidais/ultraestrutura , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , beta-Alanina/análogos & derivados , beta-Alanina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA