Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochem J ; 478(2): 443-461, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33512446

RESUMO

Steroid receptors (SRs) encompass a family of transcription factors that regulate the expression of thousands of genes upon binding to steroid hormones and include the glucocorticoid, androgen, progesterone, estrogen and mineralocorticoid receptors. SRs control key physiological and pathological processes, thus becoming relevant drug targets. As with many other nuclear proteins, hormone-activated SRs concentrate in multiple discrete foci within the cell nucleus. Even though these foci were first observed ∼25 years ago, their exact structure and function remained elusive. In the last years, new imaging methodologies and theoretical frameworks improved our understanding of the intranuclear organization. These studies led to a new paradigm stating that many membraneless nuclear compartments, including transcription-related foci, form through a liquid-liquid phase separation process. These exciting ideas impacted the SR field by raising the hypothesis of SR foci as liquid condensates involved in transcriptional regulation. In this work, we review the current knowledge about SR foci formation under the light of the condensate model, analyzing how these structures may impact SR function. These new ideas, combined with state-of-the-art techniques, may shed light on the biophysical mechanisms governing the formation of SR foci and the biological function of these structures in normal physiology and disease.


Assuntos
Núcleo Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Animais , Núcleo Celular/genética , Humanos , Receptores de Esteroides/química , Transcrição Gênica
2.
Biochem Soc Trans ; 49(6): 2871-2878, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34812855

RESUMO

The transcription factors (TFs) OCT4, SOX2 and NANOG are key players of the gene regulatory network of pluripotent stem cells. Evidence accumulated in recent years shows that even small imbalances in the expression levels or relative concentrations of these TFs affect both, the maintenance of pluripotency and cell fate decisions. In addition, many components of the transcriptional machinery including RNA polymerases, cofactors and TFs such as those required for pluripotency, do not distribute homogeneously in the nucleus but concentrate in multiple foci influencing the delivery of these molecules to their DNA-targets. How cells control strict levels of available pluripotency TFs in this heterogeneous space and the biological role of these foci remain elusive. In recent years, a wealth of evidence led to propose that many of the nuclear compartments are formed through a liquid-liquid phase separation process. This new paradigm early penetrated the stem cells field since many key players of the pluripotency circuitry seem to phase-separate. Overall, the formation of liquid compartments may modulate the kinetics of biochemical reactions and consequently regulate many nuclear processes. Here, we review the state-of-the-art knowledge of compartmentalization in the cell nucleus and the relevance of this process for transcriptional regulation, particularly in pluripotent stem cells. We also highlight the recent advances and new ideas in the field showing how compartmentalization may affect pluripotency preservation and cell fate decisions.


Assuntos
Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos
3.
Nucleic Acids Res ; 47(20): 10645-10661, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31598691

RESUMO

The glucocorticoid and progesterone receptors (GR and PR) are closely related members of the steroid receptor family. Despite sharing similar structural and functional characteristics; the cognate hormones display very distinct physiological responses. In mammary epithelial cells, PR activation is associated with the incidence and progression of breast cancer, whereas the GR is related to growth suppression and differentiation. Despite their pharmacological relevance, only a few studies have compared GR and PR activities in the same system. Using a PR+/GR+ breast cancer cell line, here we report that either glucocorticoid-free or dexamethasone (DEX)-activated GR inhibits progestin-dependent gene expression associated to epithelial-mesenchymal-transition and cell proliferation. When both receptors are activated with their cognate hormones, PR and GR can form part of the same complex according to co-immunoprecipitation, quantitative microscopy and sequential ChIP experiments. Moreover, genome-wide studies in cells treated with either DEX or R5020, revealed the presence of several regions co-bound by both receptors. Surprisingly, GR also binds novel genomic sites in cells treated with R5020 alone. This progestin-induced GR binding was enriched in REL DNA motifs and located close to genes coding for chromatin remodelers. Understanding GR behavior in the context of progestin-dependent breast cancer could provide new targets for tumor therapy.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/metabolismo , Sequência de Bases , Sítios de Ligação , Neoplasias da Mama/patologia , Desdiferenciação Celular/efeitos dos fármacos , Desdiferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cromatina/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Humanos , Progestinas/farmacologia , Promegestona/farmacologia , Ligação Proteica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
4.
BMC Biol ; 18(1): 59, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487073

RESUMO

BACKGROUND: Functional compartmentalization has emerged as an important factor modulating the kinetics and specificity of biochemical reactions in the nucleus, including those involved in transcriptional regulation. The glucocorticoid receptor (GR) is a ligand-activated transcription factor that translocates to the nucleus upon hormone stimulation and distributes between the nucleoplasm and membraneless compartments named nuclear foci. While a liquid-liquid phase separation process has been recently proposed to drive the formation of many nuclear compartments, the mechanisms governing the heterogeneous organization of GR in the nucleus and the functional relevance of foci formation remain elusive. RESULTS: We dissected some of the molecular interactions involved in the formation of GR condensates and analyzed the GR structural determinants relevant to this process. We show that GR foci present properties consistent with those expected for biomolecular condensates formed by a liquid-liquid phase separation process in living human cells. Their formation requires an initial interaction of GR with certain chromatin regions at specific locations within the nucleus. Surprisingly, the intrinsically disordered region of GR is not essential for condensate formation, in contrast to many nuclear proteins that require disordered regions to phase separate, while the ligand-binding domain seems essential for that process. We finally show that GR condensates include Mediator, a protein complex involved in transcription regulation. CONCLUSIONS: We show that GR foci have properties of liquid condensates and propose that active GR molecules interact with chromatin and recruit multivalent cofactors whose interactions with additional molecules lead to the formation of a focus. The biological relevance of the interactions occurring in GR condensates supports their involvement in transcription regulation.


Assuntos
Receptores de Glucocorticoides/genética , Animais , Linhagem Celular Tumoral , Cromatina/metabolismo , Humanos , Camundongos , Domínios Proteicos , Receptores de Glucocorticoides/metabolismo
5.
Methods ; 140-141: 10-22, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253641

RESUMO

The hierarchical organization of the cell nucleus into specialized open reservoirs and the nucleoplasm overcrowding impose restrictions to the mobility of biomolecules and their interactions with nuclear targets. These properties determine that many nuclear functions such as transcription, replication, splicing or DNA repair are regulated by complex, dynamical processes that do not follow simple rules. Advanced fluorescence microscopy tools and, in particular, fluorescence correlation spectroscopy (FCS) provide complementary and exquisite information on the dynamics of fluorescent labeled molecules moving through the nuclear space and are helping us to comprehend the complexity of the nuclear structure. Here, we describe how FCS methods can be applied to reveal the dynamical organization of the nucleus in live cells. Specifically, we provide instructions for the preparation of cellular samples with fluorescent tagged proteins and detail how FCS can be easily instrumented in commercial confocal microscopes. In addition, we describe general rules to set the parameters for one and two-color experiments and the required controls for these experiments. Finally, we review the statistical analysis of the FCS data and summarize the use of numerical simulations as a complementary approach that helps us to understand the complex matrix of molecular interactions network within the nucleus.


Assuntos
Núcleo Celular/metabolismo , Microscopia Intravital/métodos , Citometria de Varredura a Laser/métodos , Espectrometria de Fluorescência/métodos , Animais , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Linhagem Celular , Imunofluorescência/instrumentação , Imunofluorescência/métodos , Microscopia Intravital/instrumentação , Citometria de Varredura a Laser/instrumentação , Lasers , Mesocricetus , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos
6.
PLoS Biol ; 12(3): e1001813, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24642507

RESUMO

Glucocorticoids are essential for life, but are also implicated in disease pathogenesis and may produce unwanted effects when given in high doses. Glucocorticoid receptor (GR) transcriptional activity and clinical outcome have been linked to its oligomerization state. Although a point mutation within the GR DNA-binding domain (GRdim mutant) has been reported as crucial for receptor dimerization and DNA binding, this assumption has recently been challenged. Here we have analyzed the GR oligomerization state in vivo using the number and brightness assay. Our results suggest a complete, reversible, and DNA-independent ligand-induced model for GR dimerization. We demonstrate that the GRdim forms dimers in vivo whereas adding another mutation in the ligand-binding domain (I634A) severely compromises homodimer formation. Contrary to dogma, no correlation between the GR monomeric/dimeric state and transcriptional activity was observed. Finally, the state of dimerization affected DNA binding only to a subset of GR binding sites. These results have major implications on future searches for therapeutic glucocorticoids with reduced side effects.


Assuntos
Receptores de Glucocorticoides/química , Animais , Células Cultivadas , DNA/metabolismo , Camundongos , Multimerização Proteica , Estrutura Terciária de Proteína , Receptores de Glucocorticoides/metabolismo
7.
Phys Chem Chem Phys ; 19(39): 26540-26544, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-28948267

RESUMO

Mesoporous oxide films are attractive frameworks in technological areas such as catalysis, sensing, environmental protection, and photovoltaics. Herein, we used fluorescence correlation spectroscopy to explore how the pore dimensions of hydrated TiO2 mesoporous calcined films modulate the molecular diffusion. Rhodamine B molecules in mesoporous films follow a Fickian process 2-3 orders slower compared to the probe in water. The mobility increases with the pore and neck radii reaching an approximately constant value for a neck radius >2.8 nm. However, the pore size does not control the dye diffusion at low ionic strength emphasizing the relevance of the probe interactions with the pore walls on dye mobility. In conclusion, our results show that the thermal conditioning of TiO2 mesoporous films provides an exceptional tool for controlling the pore and neck radii on the nanometer scale and has a major impact on molecular diffusion within the mesoporous network.

8.
Commun Biol ; 7(1): 187, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365945

RESUMO

Whether phase-separation is involved in the organization of the transcriptional machinery and if it aids or inhibits the transcriptional process is a matter of intense debate. In this Mini Review, we will cover the current knowledge regarding the role of transcriptional condensates on gene expression regulation. We will summarize the latest discoveries on the relationship between condensate formation, genome organization, and transcriptional activity, focusing on the strengths and weaknesses of the experimental approaches used to interrogate these aspects of transcription in living cells. Finally, we will discuss the challenges for future research.


Assuntos
Regulação da Expressão Gênica , Corpos Nucleares , Hidrolases , Separação de Fases
9.
J Mol Biol ; 434(24): 167869, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36309135

RESUMO

Steroid receptors (SRs) are ligand-dependent transcription factors (TFs) relevant to key cellular processes in both physiology and pathology, including some types of cancer. SOX2 is a master TF of pluripotency and self-renewal of embryonic stem cells, and its dysregulation is also associated with various types of human cancers. A potential crosstalk between these TFs could be relevant in malignant cells yet, to the best of our knowledge, no formal study has been performed thus far. Here we show, by quantitative live-cell imaging microscopy, that ectopic expression of SOX2 disrupts the formation of hormone-dependent intranuclear condensates of many steroid receptors (SRs), including those formed by the glucocorticoid receptor (GR). SOX2 also reduces GR's binding to specific DNA targets and modulates its transcriptional activity. SOX2-driven effects on GR condensates do not require the intrinsically disordered N-terminal domain of the receptor and, surprisingly, neither relies on GR/SOX2 interactions. SOX2 also alters the intranuclear dynamics and compartmentalization of the SR coactivator NCoA-2 and impairs GR/NCoA-2 interactions. These results suggest an indirect mechanism underlying SOX2-driven effects on SRs involving this coactivator. Together, these results highlight that the transcriptional program elicited by GR relies on its nuclear organization and is intimately linked to the distribution of other GR partners, such as the NCoA-2 coactivator. Abnormal expression of SOX2, commonly observed in many tumors, may alter the biological action of GR and, probably, other SRs as well. Understanding this crosstalk may help to improve steroid hormone-based therapies in cancers with elevated SOX2 expression.


Assuntos
Receptores de Glucocorticoides , Fatores de Transcrição SOXB1 , Ativação Transcricional , Humanos , Coativador 1 de Receptor Nuclear/genética , Coativador 1 de Receptor Nuclear/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
10.
PLoS One ; 16(2): e0247792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33635936

RESUMO

Real-time reverse transcription PCR (RT-qPCR) is the gold-standard technique for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in nasopharyngeal swabs specimens. The analysis by RT-qPCR usually requires a previous extraction step to obtain the purified viral RNA. Unfortunately, RNA extraction constitutes a bottleneck for early detection in many countries since it is expensive, time-consuming and depends on the availability of commercial kits. Here, we describe an extraction-free protocol for SARS-CoV-2 detection by RT-qPCR from nasopharyngeal swab clinical samples in saline solution. The method includes a treatment with proteinase K followed by heat inactivation (PK+HID method). We demonstrate that PK+HID improves the RT-qPCR performance in comparison to the heat-inactivation procedure. Moreover, we show that this extraction-free protocol can be combined with a variety of multiplexing RT-qPCR kits. The method combined with a multiplexing detection kit targeting N and ORF1ab viral genes showed a sensitivity of 0.99 and a specificity of 0.99 from the analysis of 106 positive and 106 negative clinical samples. In conclusion, PK+HID is a robust, fast and inexpensive procedure for extraction-free RT-qPCR determinations of SARS-CoV-2. The National Administration of Drugs, Foods and Medical Devices of Argentina has recently authorized the use of this method.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Endopeptidase K/química , SARS-CoV-2/isolamento & purificação , Animais , Chlorocebus aethiops , Temperatura Alta , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , SARS-CoV-2/genética , Sensibilidade e Especificidade , Manejo de Espécimes/métodos , Células Vero
11.
PLoS One ; 16(7): e0254447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34242346

RESUMO

Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-ß and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sumoilação , Animais , Células-Tronco Embrionárias/metabolismo , Ubiquitina/metabolismo
12.
Sci Rep ; 10(1): 5195, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32251342

RESUMO

Pluripotency maintenance requires transcription factors (TFs) that induce genes necessary to preserve the undifferentiated state and repress others involved in differentiation. Recent observations support that the heterogeneous distribution of TFs in the nucleus impacts on gene expression. Thus, it is essential to explore how TFs dynamically organize to fully understand their role in transcription regulation. Here, we examine the distribution of pluripotency TFs Oct4 and Sox2 in the nucleus of embryonic stem (ES) cells and inquire whether their organization changes during early differentiation stages preceding their downregulation. Using ES cells expressing Oct4-YPet or Sox2-YPet, we show that Oct4 and Sox2 partition between nucleoplasm and a few chromatin-dense foci which restructure after inducing differentiation by 2i/LIF withdrawal. Fluorescence correlation spectroscopy showed distinct changes in Oct4 and Sox2 dynamics after differentiation induction. Specifically, we detected an impairment of Oct4-chromatin interactions whereas Sox2 only showed slight variations in its short-lived, and probably more unspecific, interactions with chromatin. Our results reveal that differentiation cues trigger early changes of Oct4 and Sox2 nuclear distributions that also include modifications in TF-chromatin interactions. This dynamical reorganization precedes Oct4 and Sox2 downregulation and may contribute to modulate their function at early differentiation stages.


Assuntos
Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Células-Tronco Embrionárias/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transcrição Gênica , Animais , Ciclo Celular , Diferenciação Celular , Núcleo Celular/ultraestrutura , Células Cultivadas , Doxiciclina/farmacologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Genes Reporter , Camundongos , Microscopia de Fluorescência , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição SOXB1/genética , Transfecção
13.
Sci Rep ; 7(1): 6219, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740156

RESUMO

The distribution of the transcription machinery among different sub-nuclear domains raises the question on how the architecture of the nucleus modulates the transcriptional response. Here, we used fluorescence fluctuation analyses to quantitatively explore the organization of the glucocorticoid receptor (GR) in the interphase nucleus of living cells. We found that this ligand-activated transcription factor diffuses within the nucleus and dynamically interacts with bodies enriched in the coregulator NCoA-2, DNA-dependent foci and chromatin targets. The distribution of the receptor among the nuclear compartments depends on NCoA-2 and the conformation of the receptor as assessed with synthetic ligands and GR mutants with impaired transcriptional abilities. Our results suggest that the partition of the receptor in different nuclear reservoirs ultimately regulates the concentration of receptor available for the interaction with specific targets, and thus has an impact on transcription regulation.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Regulação da Expressão Gênica , Coativador 2 de Receptor Nuclear/metabolismo , Receptores de Glucocorticoides/metabolismo , Transcrição Gênica , Sítios de Ligação , Núcleo Celular/genética , Células Cultivadas , Cromatina/genética , Humanos , Coativador 2 de Receptor Nuclear/genética , Regiões Promotoras Genéticas , Ligação Proteica , Receptores de Glucocorticoides/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA