Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(4): e2209329120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656857

RESUMO

The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons, and which aspects result from neuronal interaction within a network. Here, we utilize in vivo miniaturized microscopy to measure fluorescent GCaMP-reported calcium dynamics in arginine vasopressin (AVP)-expressing neurons in the intact SCN of awake, behaving mice. We report that SCN AVP neurons exhibit periodic, slow calcium waves which we demonstrate, using in vivo electrical recordings, likely reflect burst firing. Further, we observe substantial heterogeneity of function in that AVP neurons exhibit unstable rhythms, and relatively weak rhythmicity at the population level. Network analysis reveals that correlated cellular behavior, or coherence, among neuron pairs also exhibited stochastic rhythms with about 33% of pairs rhythmic at any time. Unlike single-cell variables, coherence exhibited a strong rhythm at the population level with time of maximal coherence among AVP neuronal pairs at CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity for the SCN as a whole. These results demonstrate robust circadian variation in the coordination between stochastically rhythmic neurons and that interactions between AVP neurons in the SCN may be more influential than single-cell activity in the regulation of circadian rhythms. Furthermore, they demonstrate that cells in this circuit, like those in many other circuits, exhibit profound heterogenicity of function over time and space.


Assuntos
Arginina Vasopressina , Ritmo Circadiano , Núcleo Supraquiasmático , Animais , Camundongos , Arginina , Ritmo Circadiano/fisiologia , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo
2.
Am J Physiol Heart Circ Physiol ; 325(1): H106-H112, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205732

RESUMO

Environmental cues such as light and timing of food intake influence molecular clocks that produce circadian rhythmicity of many biological functions. The master circadian clock is entrained by light input and synchronizes with peripheral clocks in every organ of the body. Careers that require rotating shift work schedules predispose workers to a constant desynchronization of these biological clocks and are associated with increased risk of cardiovascular disease. We used a stroke-prone spontaneously hypertensive rat model exposed to a known biological desynchronizer, chronic environmental circadian disruption (ECD), to test the hypothesis that it would accelerate the time to stroke onset. We then investigated whether time-restricted feeding could delay stroke onset and evaluated its usefulness as a countermeasure when combined with the constant disruption of the light cycle. We found that phase advancing of the light schedule accelerated stroke onset. Restricting food access time to 5 h/day regardless of lighting profoundly delayed stroke onset in both standard 12-h:12-h light/dark or ECD-lighting conditions compared with ad libitum feeding; however, acceleration by ECD versus control lighting conditions was still observed. Since hypertension is a precursor to stroke in this model, we assessed blood pressure in a small cohort longitudinally using telemetry. Mean daily systolic and diastolic blood pressure increased in a similar manner across rats in control and ECD conditions, thus hypertension was not grossly accelerated to cause earlier strokes. However, we observed intermittent dampening of rhythms after each shift of the light cycle reminiscent of a relapsing-remitting nondipping state. Our results suggest that constant disruption of environmental rhythms may be associated with an increased risk of cardiovascular complications in the presence of cardiovascular risk factors.NEW & NOTEWORTHY This stroke-prone spontaneously hypertensive rat model significantly delayed stroke onset with the timed food restriction intervention. Blood pressure recordings in this same model were continuous through the 3 mo and showed dampened systolic rhythms after each shift in the lighting schedule.


Assuntos
Relógios Circadianos , Acidente Vascular Cerebral , Ratos , Animais , Ratos Endogâmicos SHR , Pressão Sanguínea , Longevidade , Luz , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia
3.
Am J Physiol Renal Physiol ; 320(2): F224-F233, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356955

RESUMO

Nontraditional work schedules, such as shift work, have been associated with numerous health issues, including cardiovascular and metabolic disease. These work schedules can chronically misalign environmental timing cues with internal circadian clock systems in the brain and in peripheral organs, leading to dysfunction of those systems and their associated biological processes. Environmental circadian disruption in the kidney may be an important factor in the increased incidence of hypertension and adverse health outcomes in human shift workers. The relationship between renal rhythmicity and injury resilience is not well understood, especially in the context of environmental, rather than genetic, manipulations of the circadian system. We conducted a longitudinal study to determine whether chronic shifting of the light cycle that mimics shift work schedules would disrupt output rhythms of the kidney and accelerate kidney injury in salt-loaded male spontaneously hypertensive, stroke-prone rats. We observed that chronic shifting of the light-dark (LD) cycle misaligned and decreased the amplitude of urinary volume rhythms as the kidney phase-shifted to match each new lighting cycle. This schedule also accelerated glomerular and tubular injury marker excretion, as quantified by nephrin and KIM-1 compared with rats kept in a static LD cycle. These data suggest that disrupted rhythms in the kidney may decrease resilience and contribute to disease development in systems dependent on renal and cardiovascular functions.


Assuntos
Ritmo Circadiano , Rim/metabolismo , Rim/fisiologia , Fotoperíodo , Animais , Biomarcadores , Masculino , Ratos , Ratos Endogâmicos SHR , Cloreto de Sódio na Dieta/administração & dosagem , Cloreto de Sódio na Dieta/toxicidade , Urinálise
4.
Proc Natl Acad Sci U S A ; 115(14): E3296-E3304, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29555746

RESUMO

Mammalian/mechanistic target of rapamycin (mTOR) signaling controls cell growth, proliferation, and metabolism in dividing cells. Less is known regarding its function in postmitotic neurons in the adult brain. Here we created a conditional mTOR knockout mouse model to address this question. Using the Cre-LoxP system, the mTOR gene was specifically knocked out in cells expressing Vip (vasoactive intestinal peptide), which represent a major population of interneurons widely distributed in the neocortex, suprachiasmatic nucleus (SCN), olfactory bulb (OB), and other brain regions. Using a combination of biochemical, behavioral, and imaging approaches, we found that mice lacking mTOR in VIP neurons displayed erratic circadian behavior and weakened synchronization among cells in the SCN, the master circadian pacemaker in mammals. Furthermore, we have discovered a critical role for mTOR signaling in mediating olfaction. Odor stimulated mTOR activation in the OB, anterior olfactory nucleus, as well as piriform cortex. Odor-evoked c-Fos responses along the olfactory pathway were abolished in mice lacking mTOR in VIP neurons, which is consistent with reduced olfactory sensitivity in these animals. Together, these results demonstrate that mTOR is a key regulator of SCN circadian clock synchrony and olfaction.


Assuntos
Ritmo Circadiano/fisiologia , Neurônios/fisiologia , Bulbo Olfatório/fisiologia , Núcleo Supraquiasmático/fisiologia , Serina-Treonina Quinases TOR/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Camundongos , Camundongos Knockout , Neurônios/citologia , Bulbo Olfatório/citologia , Condutos Olfatórios , Transdução de Sinais , Núcleo Supraquiasmático/citologia
5.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R740-50, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22218419

RESUMO

Cocaine abuse is highly disruptive to circadian physiological and behavioral rhythms. The present study was undertaken to determine whether such effects are manifest through actions on critical photic and nonphotic regulatory pathways in the master circadian clock of the mouse suprachiasmatic nucleus (SCN). Impairment of SCN photic signaling by systemic (intraperitoneal) cocaine injection was evidenced by strong (60%) attenuation of light-induced phase-delay shifts of circadian locomotor activity during the early night. A nonphotic action of cocaine was apparent from its induction of 1-h circadian phase-advance shifts at midday. The serotonin receptor antagonist, metergoline, blocked shifting by 80%, implicating a serotonergic mechanism. Reverse microdialysis perfusion of the SCN with cocaine at midday induced 3.7 h phase-advance shifts. Control perfusions with lidocaine and artificial cerebrospinal fluid had little shifting effect. In complementary in vitro experiments, photic-like phase-delay shifts of the SCN circadian neuronal activity rhythm induced by glutamate application to the SCN were completely blocked by cocaine. Cocaine treatment of SCN slices alone at subjective midday, but not the subjective night, induced 3-h phase-advance shifts. Lidocaine had no shifting effect. Cocaine-induced phase shifts were completely blocked by metergoline, but not by the dopamine receptor antagonist, fluphenazine. Finally, pretreatment of SCN slices for 2 h with a low concentration of serotonin agonist (to block subsequent serotonergic phase resetting) abolished cocaine-induced phase shifts at subjective midday. These results reveal multiple effects of cocaine on adult circadian clock regulation that are registered within the SCN and involve enhanced serotonergic transmission.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Cocaína/farmacologia , Estimulação Luminosa , Transdução de Sinais/efeitos dos fármacos , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Relógios Circadianos/fisiologia , Inibidores da Captação de Dopamina/farmacologia , Flufenazina/farmacologia , Lidocaína/farmacologia , Masculino , Metergolina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Atividade Motora/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/fisiologia
6.
F1000Res ; 11: 1072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405557

RESUMO

Background: The mammalian retina contains an autonomous circadian clock that controls many physiological functions within this tissue. Our previous studies have indicated that disruption of this circadian clock by removing Bmal1 from the retina affects the visual function, retinal circuitry, and cone photoreceptor viability during aging. In the present study, we employed a mouse-derived cone photoreceptor‒like cell, 661W, to investigate which molecular mechanisms of the circadian clock may modulate cone photoreceptor viability during aging. Methods: Bmal1 knockout (BKO) cells were generated from 661W cells using the CRISPR/Cas9 gene editing tool. Deletion of Bmal1 from 661W was verified by western blot and monitoring Per2-luc bioluminescence circadian rhythms. To investigate the effect of Bmal1 removal on an oxidative stress challenge, cells were treated with hydrogen peroxide (H 2O 2,1 mM) for two hours and then cell viability was assessed. Cells were also cultured and harvested for gene expression analysis and antioxidant assay. Results: Our data indicated that 661W cells contain a functional circadian clock that mediates the response to an oxidative stress challenge in vitro and that such a response is no longer present in the BKO cell. We also hypothesized that the effect was due to the circadian regulation of the intracellular antioxidant defense mechanism. Our results revealed that in 661W cells, the antioxidant defense mechanism showed time dependent variation , whereas in BKO cells, there was an overall reduction in this antioxidant defense mechanism, and it no longer showed time dependent variation. Conclusions: Our work supported the notion that the presence of a functional circadian clock and its ability to modulate the response to an oxidative stress is the underlying mechanism that may protect cones during aging.


Assuntos
Relógios Circadianos , Glutationa Peroxidase , Estresse Oxidativo , Células Fotorreceptoras Retinianas Cones , Animais , Camundongos , Linhagem Celular , Glutationa Peroxidase/metabolismo , Envelhecimento
7.
J Biol Rhythms ; 37(1): 53-77, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35023384

RESUMO

Circadian rhythms are endogenously generated physiological and molecular rhythms with a cycle length of about 24 h. Bioluminescent reporters have been exceptionally useful for studying circadian rhythms in numerous species. Here, we report development of a reporter mouse generated by modification of a widely expressed and highly rhythmic gene encoding D-site albumin promoter binding protein (Dbp). In this line of mice, firefly luciferase is expressed from the Dbp locus in a Cre recombinase-dependent manner, allowing assessment of bioluminescence rhythms in specific cellular populations. A mouse line in which luciferase expression was Cre-independent was also generated. The Dbp reporter alleles do not alter Dbp gene expression rhythms in liver or circadian locomotor activity rhythms. In vivo and ex vivo studies show the utility of the reporter alleles for monitoring rhythmicity. Our studies reveal cell-type-specific characteristics of rhythms among neuronal populations within the suprachiasmatic nuclei ex vivo. In vivo studies show Dbp-driven bioluminescence rhythms in the liver of Albumin-Cre;DbpKI/+ "liver reporter" mice. After a shift of the lighting schedule, locomotor activity achieved the proper phase relationship with the new lighting cycle more rapidly than hepatic bioluminescence did. As previously shown, restricting food access to the daytime altered the phase of hepatic rhythmicity. Our model allowed assessment of the rate of recovery from misalignment once animals were provided with food ad libitum. These studies confirm the previously demonstrated circadian misalignment following environmental perturbations and reveal the utility of this model for minimally invasive, longitudinal monitoring of rhythmicity from specific mouse tissues.


Assuntos
Ritmo Circadiano , Núcleo Supraquiasmático , Albuminas/genética , Albuminas/metabolismo , Animais , Ritmo Circadiano/genética , Genes Reporter , Luciferases/genética , Luciferases/metabolismo , Camundongos , Fotoperíodo , Núcleo Supraquiasmático/metabolismo
8.
J Biol Rhythms ; 35(4): 368-376, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32508262

RESUMO

Understanding the health consequences of chronic disruption of circadian rhythms can contribute to improving prevention strategies for shift workers. Chronic circadian disruption in shift work has been linked to a higher risk of stroke. Dysregulated immune responses are also linked to circadian disruption and may be a factor in stroke outcomes in shift workers. In this study, we test the hypotheses that specific schedules of circadian disruption exacerbate inflammatory responses in the brain, causing an increase in infarct size after experimentally induced ischemic stroke. Mice were exposed to 1 of 5 different lighting schedules followed by a 30-min middle cerebral artery occlusion, then reperfusion and 3-day recovery. A history of weekly phase advances resulted in an increased infarct volume versus the control lighting schedule. These effects were shift-direction specific, nonpermanent, and required multiple shifts to occur. In a separate cohort, stereotaxic injections of lipopolysaccharide were given bilaterally after exposure to 1 of 3 different lighting schedules. Ratios of pro- to anti-inflammatory cytokine expression show dysregulated responses after a history of phase advances. We conclude that chronic circadian disruption leads to worsened stroke outcome in a direction- and schedule-specific manner likely because of priming of the inflammatory response in the brain. These pieces of evidence suggest that the health impacts of shift work may be improved by targeting shift work scheduling, inflammatory mediators, or both.


Assuntos
Ritmo Circadiano , Meio Ambiente , Imunidade , AVC Isquêmico/etiologia , Fotoperíodo , Jornada de Trabalho em Turnos/estatística & dados numéricos , Animais , Encéfalo/imunologia , Encéfalo/patologia , Citocinas/imunologia , Inflamação/complicações , Iluminação , Lipopolissacarídeos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tolerância ao Trabalho Programado
9.
PLoS One ; 14(5): e0217368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31136603

RESUMO

Environmental circadian disruption (ECD), characterized by repeated or long-term disruption in environmental timing cues which require the internal circadian clock to change its phase to resynchronize with the environment, is associated with numerous serious health issues in humans. While animal and isolated cell models exist to study the effects of destabilizing the relationship between the circadian system and the environment, neither approach provides an ideal solution. Here, we developed an in vitro model which incorporates both elements of a reductionist cellular model and disruption of the clock/environment relationship using temperature as an environmental cue, as occurs in vivo. Using this approach, we have demonstrated that some effects of in vivo ECD can be reproduced using only isolated peripheral oscillators. Specifically, we report exaggerated inflammatory responses to endotoxin following repeated environmental circadian disruption in explanted spleens. This effect requires a functional circadian clock but not the master brain clock, the suprachiasmatic nucleus (SCN). Further, we report that this is a result of cumulative, rather than acute, circadian disruption as has been previously observed in vivo. Finally, such effects appear to be tissue specific as it does not occur in lung, which is less sensitive to the temperature cycles employed to induce ECD. Taken together, the present study suggests that this model could be a valuable tool for dissecting the causes and effects of circadian disruption both in isolated components of physiological systems as well as the aggregated interactions of these systems that occur in vivo.


Assuntos
Relógios Circadianos/fisiologia , Inflamação/fisiopatologia , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/fisiologia , Endotoxinas/toxicidade , Meio Ambiente , Feminino , Técnicas In Vitro , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Especificidade de Órgãos , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiologia , Baço/efeitos dos fármacos , Baço/fisiologia , Núcleo Supraquiasmático/efeitos dos fármacos , Temperatura
10.
J Biol Rhythms ; 30(6): 563-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26271539

RESUMO

Mice are used widely for research on circadian, molecular and other processes; however, little is known of circadian age- and, particularly, sex-related changes that occur over the entire lifespan of this species. To shed light on this question, the authors used a longitudinal design for the first continuous actogram measurements of general circadian locomotor activity rhythms unperturbed by photocycle or other experimental manipulations over the lifespan in male and female C57BL/6J mice. These weaning-to-death actograms are the most inclusive undertaken to date. Comparisons of circadian parameters (phase angle of entrainment, length of daily activity, bout length/intensity) were made among 4 life stages (adolescence, adult, middle age, and senescence). The present data reveal the progressive and sex-related changes in general locomotor activity pattern that occur throughout the lifespan. From the overall perspective of this study, there appears to be a need for wider age and sex representation in circadian research.


Assuntos
Ritmo Circadiano/fisiologia , Longevidade , Atividade Motora , Envelhecimento/fisiologia , Animais , Feminino , Estágios do Ciclo de Vida , Luz , Estudos Longitudinais , Masculino , Camundongos Endogâmicos C57BL , Fotoperíodo , Fatores Sexuais
11.
Chronobiol Int ; 32(2): 255-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25286134

RESUMO

Few, if any studies have focused on the daily rhythmic nature of modern industrialized populations. The present study utilized real-time load data from the U.S. Pacific Northwest electrical power grid as a reflection of human operative household activity. This approach involved actigraphic analyses of continuously streaming internet data (provided in 5 min bins) from a human subject pool of approximately 43 million primarily residential users. Rhythm analyses reveal striking seasonal and intra-week differences in human activity patterns, largely devoid of manufacturing and automated load interference. Length of the diurnal activity period (alpha) is longer during the spring than the summer (16.64 h versus 15.98 h, respectively; p < 0.01). As expected, significantly more activity occurs in the solar dark phase during the winter than during the summer (6.29 h versus 2.03 h, respectively; p < 0.01). Interestingly, throughout the year a "weekend effect" is evident, where morning activity onset occurs approximately 1 h later than during the work week (5:54 am versus 6:52 am, respectively; p < 0.01). This indicates a general phase-delaying response to the absence of job-related or other weekday morning arousal cues, substantiating a preference or need to sleep longer on weekends. Finally, a shift in onset time can be seen during the transition to Day Light Saving Time, but not the transition back to Standard Time. The use of grid power load as a means for human actimetry assessment thus offers new insights into the collective diurnal activity patterns of large human populations.


Assuntos
Ritmo Circadiano , Centrais Elétricas/estatística & dados numéricos , Sono/fisiologia , Actigrafia , Automação , Relógios Biológicos , Temperatura Corporal , Eletricidade , Eletroencefalografia , Emprego , Humanos , Internet , Luz , Noroeste dos Estados Unidos , Estações do Ano , Luz Solar , Fatores de Tempo , Estados Unidos
12.
Behav Brain Res ; 243: 255-60, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23333842

RESUMO

Cocaine is a potent disruptor of photic and non-photic pathways for circadian entrainment of the master circadian clock of the suprachiasmatic nucleus (SCN). These actions of cocaine likely involve its modulation of molecular (clock gene) components for SCN clock timekeeping. At present, however, the physiological basis of such an interaction is unclear. To address this question, we compared photic and non-photic phase-resetting responses between wild-type (WT) and Per2 mutant mice expressing nonfunctional PER2 protein to systemic and intra-SCN cocaine administrations. In the systemic trials, cocaine was administered i.p. (20 mg/kg) either at midday or prior to a light pulse in the early night to assess its non-photic and photic behavioral phase-resetting actions, respectively. In the intra-SCN trial, cocaine was administered by reverse microdialysis at midday to determine if the SCN is a direct target for its non-photic phase-resetting action. Non-photic phase-advancing responses to i.p. cocaine at midday were significantly (∼3.5-fold) greater in Per2 mutants than WTs. However, the phase-advancing action of intra-SCN cocaine perfusion at midday did not differ between genotypes. In the light pulse trial, Per2 mutants exhibited larger photic phase-delays than did WTs, and the attenuating action of cocaine on this response was proportionately larger than in WTs. These data indicate that the Per2 clock gene is a potent modulator of cocaine's actions in the circadian system. With regard to non-photic phase-resetting, the SCN is confirmed as a direct target of cocaine action; however, Per2 modulation of this effect likely occurs outside of the SCN.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Cocaína/metabolismo , Cocaína/farmacologia , Proteínas Circadianas Period/fisiologia , Núcleo Supraquiasmático/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Relógios Circadianos/genética , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Masculino , Camundongos , Camundongos Mutantes , Proteínas Circadianas Period/genética , Fotoperíodo , Distribuição Aleatória , Núcleo Supraquiasmático/fisiologia
13.
Neurosci Lett ; 473(3): 220-3, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20188794

RESUMO

The suprachiasmatic nucleus (SCN) of the hypothalamus is the central pacemaker that controls circadian rhythms in mammals. In diurnal grass rats (Arvicanthis niloticus), many functional aspects of the SCN are similar to those of nocturnal rodents, making it likely that the difference in the circadian system of diurnal and nocturnal animals lies downstream from the SCN. Rhythms in clock genes expression occur in several brain regions outside the SCN that may function as extra-SCN oscillators. In male grass rats PER1 is expressed in the oval nucleus of the bed nucleus of the stria terminalis (BNST-ov) and in the central and basolateral amygdala (CEA and BLA, respectively); several features of PER1 expression in these regions of the grass rat brain differ substantially from those of nocturnal species. Here we describe PER2 rhythms in the same three brain regions of the grass rat. In the BNST-ov and CEA PER2 expression peaked early in the light period Zeitgeber time (ZT) 2 and was low during the early night, which is the reverse of the pattern of nocturnal rodents. In the BLA, PER2 expression was relatively low for most of the 24-h cycle, but showed an acute elevation late in the light period (ZT10). This pattern is also different from that of nocturnal rodents that show elevated PER2 expression in the mid to late night and into the early day. These results are consistent with the hypothesis that diurnal behavior is associated with a phase change between the SCN and extra-SCN oscillators.


Assuntos
Tonsila do Cerebelo/metabolismo , Ritmo Circadiano , Proteínas Circadianas Period/biossíntese , Núcleos Septais/metabolismo , Animais , Masculino , Murinae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA