Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Mol Cancer ; 22(1): 192, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38031025

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) are a therapeutic strategy for various cancers although only a subset of patients respond to the therapy. Identifying patients more prone to respond to ICIs may increase the therapeutic benefit and allow studying new approaches for resistant patients. METHODS: We analyzed the TCGA cohort of HNSCC patients in relation to their activation of 26 immune gene expression signatures, as well as their cell type composition, in order to define signaling pathways associated with resistance to ICIs. Results were validated on two cohorts of 102 HNSCC patients and 139 HNSCC patients under treatment with PD-L1 inhibitors, respectively, and a cohort of 108 HNSCC HPV negative patients and by in vitro experiments in HNSCC cell lines. RESULTS: We observed a significant association between the gene set and TP53 gene status and OS and PFS of HNSCC patients. Surprisingly, the presence of a TP53 mutation together with another co-driver mutation was associated with significantly higher levels of the immune gene expression, in comparison to tumors in which the TP53 gene was mutated alone. In addition, the higher level of TP53 mutated-dependent MYC signature was associated with lower levels of the immune gene expression signature. In vitro and three different patient cohorts validation analyses corroborated these findings. CONCLUSIONS: Immune gene signature sets associated with TP53 status and co-mutations classify with more accuracy HNSCC patients. These biomarkers may be easily implemented in clinical setting.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/genética , Estudos de Coortes , Transdução de Sinais , Mutação , Prognóstico , Proteína Supressora de Tumor p53/genética
2.
Mol Cancer ; 21(1): 33, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090471

RESUMO

The role of circular RNAs in oncogenesis has begun to be widely studied in recent years, due to the significant impact that these molecules have in disease pathogenesis, as well as their potential for the future of innovative therapies. Moreover, due to their characteristically circular shape, circular RNAs are very resistant molecules to RNA degradation whose levels are easily assessed in body fluids. Accordingly, they represent an opportunity for the discovery of new diagnostic and prognostic markers in a wide range of diseases. Among circular RNAs, circPVT1 is a rather peculiar one that originates from the circularization of the exon 2 of the PVT1 gene that encodes a pro-tumorigenic long non-coding RNA named lncPVT1. There are a few examples of circular RNAs that derive from a locus producing another non-coding RNA. Despite their apparent transcriptional independence, which occurs using two different promoters, a possible synergistic effect in tumorigenesis cannot be excluded considering that both have been reported to correlate with the oncogenic phenotype. This complex mechanism of regulation appears to also be controlled by c-MYC. Indeed, the PVT1 locus is located only 53 Kb downstream c-MYC gene, a well-known oncogene that regulates the expression levels of about 15% of all genes. Here, we review circPVT1 origin and biogenesis highlighting the most important mechanisms through which it plays a fundamental role in oncogenesis, such as the well-known sponge activity on microRNAs, as well as its paradigmatic interactome link with lncPVT1 and c-MYC expression.


Assuntos
MicroRNAs , RNA Longo não Codificante , Carcinogênese/genética , Genes myc , Humanos , MicroRNAs/genética , Oncogenes , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Int J Mol Sci ; 22(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34769499

RESUMO

Chemoresistance is a hallmark of malignant pleural mesothelioma (MPM) management and the expression of ALDH1A3 is responsible for the survival and activity of MPM chemoresistant cell subpopulations (ALDHbright cells). We enriched mesothelioma ALDHbright cells to near homogeneity by FACS sorting and an Aldefluor assay and performed unbiased Affymetrix gene expression profiling. Viability and ELISA assays were used to rule out significant apoptosis in the sorted cell subpopulations and to assess target engagement by butein. Statistical analysis of the results, pathway enrichment and promoter enrichment were employed for the generation of the data. Q-RTPCR was used to validate a subset of the identified, modulated mRNAs In this work, we started from the observation that the mRNA levels of the ALDH1A3 isoform could prognostically stratify MPM patients. Thus, we purified MPM ALDHbright cells from NCI-H2595 cells and interrogated their gene expression (GES) profile. We analyzed the GES of the purified cells at both a steady state and upon treatment with butein (a multifunctional tetrahydroxy-chalcone), which abates the ALDHbright cell number, thereby exerting chemo-sensitizing effects in vitro and in vivo. We identified 924 genes modulated in a statistically significant manner as a function of ALDH status and of the response to the inhibitor. Pathway and promoter enrichment identified the molecular determinant of high ALDH status and how butein treatment altered the molecular portrait of those chemoresistant cell subpopulations. Further, we unraveled an eighteen-gene signature with high prognostic significance for MPM patients, and showed that most of the identified prognostic contributors escaped the analysis of unfractionated samples. This work proves that digging into the unexplored field of intra-tumor heterogeneity (ITH) by working at the cell subpopulation level may provide findings of prognostic relevance, in addition to mechanistic insights into tumor resistance to therapy.


Assuntos
Aldeído Oxirredutases/metabolismo , Reparo do DNA , Mesotelioma Maligno/patologia , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Evolução Clonal , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo/métodos , Humanos , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Prognóstico , Taxa de Sobrevida
4.
Haematologica ; 104(1): 82-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30076175

RESUMO

MicroRNAs, non-coding regulators of gene expression, are likely to function as important downstream effectors of many transcription factors including MYB. Optimal levels of MYB are required for transformation/maintenance of BCR-ABL-expressing cells. We investigated whether MYB silencing modulates microRNA expression in Philadelphia-positive (Ph+) leukemia cells and if MYB-regulated microRNAs are important for the "MYB addiction" of these cells. Thirty-five microRNAs were modulated by MYB silencing in lymphoid and erythromyeloid chronic myeloid leukemia-blast crisis BV173 and K562 cells; 15 of these were concordantly modulated in both lines. We focused on the miR-17-92 cluster because of its oncogenic role in tumors and found that: i) it is a direct MYB target; ii) it partially rescued the impaired proliferation and enhanced apoptosis of MYB-silenced BV173 cells. Moreover, we identified FRZB, a Wnt/ß-catenin pathway inhibitor, as a novel target of the miR-17-92 cluster. High expression of MYB in blast cells from 2 Ph+leukemia patients correlated positively with the miR-17-92 cluster and inversely with FRZB. This expression pattern was also observed in a microarray dataset of 122 Ph+acute lymphoblastic leukemias. In vivo experiments in NOD scid gamma mice injected with BV173 cells confirmed that FRZB functions as a Wnt/ß-catenin inhibitor even as they failed to demonstrate that this pathway is important for BV173-dependent leukemogenesis. These studies illustrate the global effects of MYB expression on the microRNAs profile of Ph+cells and supports the concept that the "MYB addiction" of these cells is, in part, caused by modulation of microRNA-regulated pathways affecting cell proliferation and survival.


Assuntos
Crise Blástica/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , MicroRNAs/biossíntese , Família Multigênica , Proteínas Proto-Oncogênicas c-myb/biossíntese , RNA Neoplásico/biossíntese , Ativação Transcricional , Animais , Crise Blástica/tratamento farmacológico , Crise Blástica/genética , Crise Blástica/patologia , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myb/genética , RNA Neoplásico/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Semin Cell Dev Biol ; 50: 133-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26773212

RESUMO

Emerging evidence point to a crucial role for non-coding RNAs in modulating homeostatic signaling under physiological and pathological conditions. MicroRNAs, the best-characterized non-coding RNAs to date, can exquisitely integrate spatial and temporal signals in complex networks, thereby confer specificity and sensitivity to tissue response to changes in the microenvironment. MicroRNAs appear as preferential partners for Receptor Tyrosine Kinases (RTKs) in mediating signaling under stress conditions. Stress signaling can be especially relevant to disease. Here we focus on the ability of microRNAs to mediate RTK signaling in cancer, by acting as both tumor suppressors and oncogenes. We will provide a few general examples of microRNAs modulating specific tumorigenic functions downstream of RTK signaling and integrate oncogenic signals from multiple RTKs. A special focus will be devoted to epidermal growth factor receptor (EGFR) signaling, a system offering relatively rich information. We will explore the role of selected microRNAs as bidirectional modulators of EGFR functions in cancer cells. In addition, we will present the emerging evidence for microRNAs being specifically modulated by oncogenic EGFR mutants and we will discuss how this impinges on EGFRmut driven chemoresistance, which fits into the tumor heterogeneity-driven cancer progression. Finally, we discuss how other non-coding RNA species are emerging as important modulators of cancer progression and why the scenario depicted herein is destined to become increasingly complex in the future.


Assuntos
MicroRNAs/metabolismo , Neoplasias/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Receptores ErbB/metabolismo , Humanos , MicroRNAs/genética , Neoplasias/genética , Estresse Fisiológico
6.
Carcinogenesis ; 39(2): 293-304, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29236960

RESUMO

Alteration in microRNAs (miRNAs) expression is a frequent finding in human cancers. In particular, widespread miRNAs down-regulation is a hallmark of malignant transformation. In the present report, we showed that the miR-128-3p, which is up-regulated in lung cancer tissues, has Drosha and Dicer, two key enzymes of miRNAs processing, as the main modulation targets leading to the widespread down-regulation of miRNA expression. We observed that the miRNAs downregulation induced by miR-128-3p contributed to the tumorigenic properties of lung cancer cells. In particular, miR-128-3p-mediated miRNAs down-regulation contributed to aberrant SNAIL and ZEB1 expression thereby promoting the epithelial-to-mesenchymal transition (EMT) program. Drosha also resulted to be implicated in the control of migratory phenotype as its expression counteracted miR-128-3p functional effects. Our study provides mechanistic insights into the function of miR-128-3p as a key regulator of the malignant phenotype of lung cancer cells. This also enforces the remarkable impact of Drosha and Dicer alteration in cancer, and in particular it highlights a role for Drosha in non-small-cell lung cancer cells migration.


Assuntos
Adenocarcinoma/genética , Adenocarcinoma/patologia , Movimento Celular/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Ribonuclease III/biossíntese , Adenocarcinoma/mortalidade , Adenocarcinoma de Pulmão , Linhagem Celular Tumoral , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/mortalidade , Ribonuclease III/genética
7.
Carcinogenesis ; 39(2): 98-108, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29126102

RESUMO

MicroRNAs (miRNAs) might be considered both predictors and players of cancer development. The aim of the present report was to investigate whether many years before the diagnosis of breast cancer miRNA expression is already disregulated. In order to test this hypothesis, we compared miRNAs extracted from leukocytes in healthy women who later developed breast cancer and in women who remain healthy during the whole 15-year follow-up time. Accordantly, we used a case-control study design nested in the hOrmone and Diet in the ETiology of breast cancer (ORDET) prospective cohort study addressing the possibility that miRNAs can serve as both early biomarkers and components of the hormonal etiological pathways leading to breast cancer development in premenopausal women. We compared leukocyte miRNA profiles of 191 incident premenopausal breast cancer cases and profiles of 191 women who remained healthy over a follow-up period of 20 years. The analysis identified 20 differentially expressed miRNAs in women candidate to develop breast cancer versus control women. The upregulated miRNAs, miR-513-a-5p, miR-513b-5p and miR-513c-5p were among the most significantly deregulated miRNAs. In multivariate analysis, miR-513a-5p upregulation was directly and statistically significant associated with breast cancer risk (OR = 1.69; 95% CI 1.08-2.64; P = 0.0293). In addition, the upregulation of miR-513-a-5p displayed the strongest direct association with serum progesterone and testosterone levels. The experimental data corroborated the inhibitory function of miR-513a-5p on progesterone receptor expression confirming that progesterone receptor is a target of miR-513a-5p. The identification of upregulated miR-513a-5p with its oncogenic potential further validates the use of miRNAs as long-term biomarker of breast cancer risk.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , MicroRNAs/sangue , Receptores de Progesterona/biossíntese , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Detecção Precoce de Câncer/métodos , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco
8.
EMBO Rep ; 17(2): 188-201, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26691213

RESUMO

Mutant p53 proteins are present in more than half of human cancers. Yes-associated protein (YAP) is a key transcriptional regulator controlling organ growth, tissue homeostasis, and cancer. Here, we report that these two determinants of human malignancy share common transcriptional signatures. YAP physically interacts with mutant p53 proteins in breast cancer cells and potentiates their pro-proliferative transcriptional activity. We found YAP as well as mutant p53 and the transcription factor NF-Y onto the regulatory regions of cyclin A, cyclin B, and CDK1 genes. Either mutant p53 or YAP depletion down-regulates cyclin A, cyclin B, and CDK1 gene expression and markedly slows the growth of diverse breast cancer cell lines. Pharmacologically induced cytoplasmic re-localization of YAP reduces the expression levels of cyclin A, cyclin B, and CDK1 genes both in vitro and in vivo. Interestingly, primary breast cancers carrying p53 mutations and displaying high YAP activity exhibit higher expression levels of cyclin A, cyclin B, and CDK1 genes when compared to wt-p53 tumors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Fosfoproteínas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Proteína Quinase CDC2 , Proliferação de Células , Ciclina A/genética , Ciclina A/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Feminino , Células HCT116 , Humanos , Células MCF-7 , Mutação , Fosfoproteínas/genética , Ligação Proteica , Transporte Proteico , Fatores de Transcrição , Proteína Supressora de Tumor p53/genética , Proteínas de Sinalização YAP
9.
Carcinogenesis ; 38(1): 64-75, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27797825

RESUMO

Lung cancer is the first cause of cancer death worldwide and the Hippo pathway transcriptional coactivators YAP/TAZ have a pro-oncogenic role in this context. In order to understand the mechanisms through which YAP/TAZ elicit their oncogenic role in different systems, many studies are focused on YAP/TAZ target genes involved in the regulation of cell proliferation/survival and migration. However, there is scarce evidence on the role of YAP/TAZ in microRNA regulation while there is increasing evidence supporting the role of microRNAs in the main oncogenic processes. Here, we showed that YAP/TAZ were able to regulate several microRNAs in non-small cell lung cancer (NSCLC) cell lines. In detail, we focused on a cluster of three oncogenic microRNAs (miR-25, 93 and 106b) hosted in the MCM7 gene that were overexpressed in lung tumors compared to normal tissues. In addition, similar behavior was observed in breast cancer and head and neck tumor casuistries, where they showed a prognostic role. In NSCLC cells, YAP/TAZ induced the transcription of the MCM7 gene and its hosted miRs, thereby promoting cell proliferation through the post-transcriptional inhibition of the p21 cell cycle regulator. Accordingly, p21 was maintained at low levels in lung tumors compared to normal tissues. Conversely, its expression was restored in NSCLC cells upon YAP/TAZ interference or upon treatment with the statin cerivastatin. In summary, we provide evidence for a novel mechanism of modulation supporting the protumorigenic functions of the YAP/TAZ factors through the modulation of a bioncogenic locus consisting of one gene and three hosted microRNAs.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , MicroRNAs/genética , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Componente 7 do Complexo de Manutenção de Minicromossomo/genética , Fosfoproteínas/genética , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
11.
Mod Pathol ; 30(10): 1387-1401, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28731048

RESUMO

Head and neck squamous cell carcinoma is typically characterized by a high incidence of local recurrences. It has been extensively shown that mucosa from head and neck squamous cell carcinoma patients carries both genetic and gene expression alterations, which are mostly attributable to major etiologic agents of head and neck squamous cell carcinoma. We previously identified a signature of microRNAs (miRNAs) whose high expression in tumors is predictive of recurrence. Here, we investigated whether the deregulation of miRNA expression in the tumor-surrounding mucosa is correlated to disease recurrence. Specifically, comparing the miRNA expression in matched tumoral, peritumoral, and normal tissues collected from head and neck squamous cell carcinoma patients, we identified 35 miRNAs that are deregulated in both tumoral and peritumoral tissues as compared with normal matched samples. Four of these composed a miRNA signature that predicts head and neck squamous cell carcinoma local recurrence independently from prognostic clinical variables. The predictive power of the miRNA signature increased when using the expression levels derived from both the peritumoral and the tumoral tissues. The expression signal of the miRNAs composing the predictive signature correlated with the transcriptional levels of genes mostly associated with proliferation. Our results show that expression of miRNAs in tumor-surrounding mucosa may strongly contribute to the identification of head and neck squamous cell carcinoma patients at high risk of local recurrence.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco , Carcinoma de Células Escamosas de Cabeça e Pescoço , Transcriptoma
12.
Int J Mol Sci ; 18(9)2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878191

RESUMO

Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy.


Assuntos
Melatonina/uso terapêutico , Animais , Antioxidantes/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Epilepsia/metabolismo , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/farmacologia
13.
Int J Mol Sci ; 18(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467351

RESUMO

p53 protein is a well-known tumor suppressor factor that regulates cellular homeostasis. As it has several and key functions exerted, p53 is known as "the guardian of the genome" and either loss of function or gain of function mutations in the TP53 coding protein sequence are involved in cancer onset and progression. The Hippo pathway is a key regulator of developmental and regenerative physiological processes but if deregulated can induce cell transformation and cancer progression. The p53 and Hippo pathways exert a plethora of fine-tuned functions that can apparently be in contrast with each other. In this review, we propose that the p53 status can affect the Hippo pathway function by switching its outputs from tumor suppressor to oncogenic activities. In detail, we discuss: (a) the oncogenic role of the protein complex mutant p53/YAP; (b) TAZ oncogenic activation mediated by mutant p53;


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/genética , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Carcinogênese/genética , Via de Sinalização Hippo , Humanos , Camundongos , Neoplasias/metabolismo , Oncogenes , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas de Sinalização YAP
14.
Blood Cells Mol Dis ; 57: 71-3, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26852659

RESUMO

Umbilical cord blood (UCB) represents a source of hematopoietic stem cells for patients lacking a suitably matched and readily available related or unrelated stem cell donor. As UCB transplantation from compatible sibling provides good results in children therefore directed sibling UCB collection and banking is indicated in family who already have a child with a disease potentially treatable with an allogeneic hematopoietic stem cell transplantation. Particularly, related UCB collection is recommended when the patients urgently need a transplantation. To provide access to all patients in need, we developed a "Sibling cord blood donor program for hematopoietic cell transplantation". Here we report results of this project started 20years ago. To date, in this study a total of 194 families were enrolled, a total of 204 UCB samples were successfully collected and 15 pediatric patients have been transplanted. Recently, some authors have suggested novel role for UCB other than in the transplantation setting. Therefore, future studies in the immunotherapy and regenerative medicine areas could expand indication for sibling directed UCB collection.


Assuntos
Bancos de Sangue/história , Transplante de Células-Tronco de Sangue do Cordão Umbilical/história , Sangue Fetal/citologia , Transplante de Células-Tronco Hematopoéticas/história , Células-Tronco Hematopoéticas/citologia , Adolescente , Criança , Pré-Escolar , Transplante de Células-Tronco de Sangue do Cordão Umbilical/métodos , Feminino , Sangue Fetal/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Hemoglobinopatias/imunologia , Hemoglobinopatias/patologia , Hemoglobinopatias/terapia , História do Século XX , História do Século XXI , Humanos , Lactente , Itália , Masculino , Irmãos , Doadores não Relacionados
16.
Mol Cell ; 32(6): 803-14, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19111660

RESUMO

p73 has been identified as a structural and functional homolog of the tumor suppressor p53. The transcriptional coactivator Yes-associated protein (YAP) has been demonstrated to interact with and to enhance p73-dependent apoptosis in response to DNA damage. Here, we show the existence of a proapoptotic autoregulatory feedback loop between p73, YAP, and the promyelocytic leukemia (PML) tumor suppressor gene. We demonstrate that PML is a direct transcriptional target of p73/YAP, and we show that PML transcriptional activation by p73/YAP is under the negative control of the proto-oncogenic Akt/PKB kinase. Importantly, we find that PML and YAP physically interact through their PVPVY and WW domains, respectively, causing PML-mediated sumoylation and stabilization of YAP. Hence, we determine a mechanistic pathway in response to DNA damage that could have relevant implications for the treatment of human cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteínas de Ligação a DNA/metabolismo , Retroalimentação Fisiológica , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas de Ciclo Celular , Linhagem Celular , Cisplatino/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Modelos Biológicos , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteína da Leucemia Promielocítica , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Ubiquitina/metabolismo , Proteínas de Sinalização YAP
17.
Subcell Biochem ; 85: 91-103, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25201190

RESUMO

More than half of all human cancers carry p53 gene mutations whose resulting proteins are mostly full-length with a single amino acid change, abundantly present in cancer cells and unable to exert oncosuppressor activities. Frequently, mutant p53 proteins gain oncogenic functions through which they actively contribute to the establishment, the maintenance and the spreading of a given cancer cell. Intense research effort has been devoted to the deciphering of the molecular mechanisms underlying the gain of function of mutant p53 proteins. Here we mainly review the oncogenic transcriptional activity of mutant p53 proteins that mainly occurs through the aberrant cooperation with bona-fide transcription factors and leads to either aberrant up-regulation or down-regulation of selected target genes. Thus, mutant p53 proteins are critical components of oncogenic transcriptional networks that have a profound impact in human cancers.


Assuntos
Carcinogênese , Regulação da Expressão Gênica/genética , Genes p53 , Transcrição Gênica/genética , Humanos , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia
18.
Cancer Cell ; 10(3): 191-202, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16959611

RESUMO

This article investigates the mechanistic aspects of mutant p53 "gain of function" in response to DNA damage. We show that mutant forms of p53 protein interact with NF-Y. The expression of cyclin A, cyclin B1, cdk1, and cdc25C, as well as the cdk1-associated kinase activities, is upregulated after DNA damage, provoking a mutant p53/NF-Y-dependent increase in DNA synthesis. Mutant p53 binds NF-Y target promoters and, upon DNA damage, recruits p300, leading to histone acetylation. The recruitment of mutant p53 to the CCAAT sites is severely impaired upon abrogation of NF-YA expression. Endogenous NF-Y, mutant p53, and p300 proteins form a triple complex upon DNA damage. We demonstrate that aberrant transcriptional regulation underlies the ability of mutant p53 proteins to act as oncogenic factors.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Ciclo Celular , Transcrição Gênica/genética , Proteína Supressora de Tumor p53/metabolismo , Sequência de Bases , Fator de Ligação a CCAAT/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Humanos , Mutação/genética , Ligação Proteica , Proteína Supressora de Tumor p53/genética , Fatores de Transcrição de p300-CBP/metabolismo
19.
Biomark Res ; 12(1): 32, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444004

RESUMO

Locoregional recurrences represent a frequently unexpected problem in head and neck squamous cell carcinoma (HNSCC). Relapse often (10-30%) occurs in patients with histologically negative resection margins (RMs), probably due to residual tumor cells or hidden pre-cancerous lesions in normal mucosa, both missed by histopathological examination. Therefore, definition of a 'clean' or tumor-negative RM is controversial, demanding for novel approaches to be accurately explored. Here, we evaluated next generation sequencing (NGS) and digital PCR (dPCR) as tools to profile TP53 mutational status and circulating microRNA expression aiming at scoring the locoregional risk of recurrence by means of molecular analyses. Serial monitoring of these biomarkers allowed identifying patients at high risk, laying the ground for accurate tracking of disease evolution and potential intensification of post-operative treatments. Additionally, our pipeline demonstrated its applicability into the clinical routine, being cost-effective and feasible in terms of patient sampling, holding promise to accurately (re)-stage RMs in the era of precision medicine.

20.
Carcinogenesis ; 34(5): 1051-61, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23354312

RESUMO

Melatonin has been known to be a chemopreventive agent since its levels inversely correlate with the risk of developing cancer. We have recently shown that melatonin induces p38-dependent phosphorylation of both p53 and histone H2AX. This is associated with a p53-mediated increase in repair of both endogenous and chemotherapy-induced DNA damage. In addition, the inhibition of p38 activities impairs melatonin's capability to induce a p53-dependent DNA damage response and thus its ability to maintain genome integrity. Since melatonin-induced p53 phosphorylation requires an intact p38 phosphorylation cascade and p38 can be activated by G proteins, we supposed that melatonin's activities could be mediated by its G-protein-coupled membrane receptors, MT1 and MT2. Here, we show that the activation of the p53-dependent DNA damage response by melatonin is indeed mediated by MT1 and MT2. As a result, the absence of either receptor impairs melatonin's ability to reduce both cell proliferation and clonogenic potential of cancer cells. In addition, this causes an impairment of the p53-dependent DNA damage response. By providing molecular insight, our findings might have translational impact, suggesting the involvement of melatonin receptors in tumorigenesis.


Assuntos
Dano ao DNA , Melatonina/metabolismo , Melatonina/farmacologia , Receptores de Melatonina/antagonistas & inibidores , Receptores de Melatonina/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células HCT116 , Humanos , Células MCF-7 , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 15 da Matriz/genética , Metaloproteinase 15 da Matriz/metabolismo , Melatonina/genética , Camundongos , Camundongos Nus , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Melatonina/genética , Transplante Heterólogo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA