Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NAR Cancer ; 5(3): zcad033, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37388540

RESUMO

It has been over a decade since the initial identification of exonuclease domain mutations in the genes encoding the catalytic subunits of replication DNA polymerases ϵ and δ (POLE and POLD1) in tumors from highly mutated endometrial and colorectal cancers. Interest in studying POLE and POLD1 has increased significantly since then. Prior to those landmark cancer genome sequencing studies, it was well documented that mutations in replication DNA polymerases that reduced their DNA synthesis accuracy, their exonuclease activity or their interactions with other factors could lead to increased mutagenesis, DNA damage and even tumorigenesis in mice. There are several recent, well-written reviews of replication DNA polymerases. The aim of this review is to gather and review in some detail recent studies of DNA polymerases ϵ and δ as they pertain to genome instability, cancer and potential therapeutic treatments. The focus here is primarily on recent informative studies on the significance of mutations in genes encoding their catalytic subunits (POLE and POLD1), mutational signatures, mutations in associated genes, model organisms, and the utility of chemotherapy and immune checkpoint inhibition in polymerase mutant tumors.

2.
NAR Cancer ; 4(1): zcac004, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35252866

RESUMO

Mutations in the exonuclease domain of POLE are associated with tumors harboring very high mutation burdens. The mechanisms linking this significant mutation accumulation and tumor development remain poorly understood. Pole +/P286R;Trp53 +/- mice showed accelerated cancer mortality compared to Pole +/P286R;Trp53 +/+ mice. Cells from Pole +/P286R mice showed increased p53 activation, and subsequent loss of p53 permitted rapid growth, implicating canonical p53 loss of heterozygosity in POLE mutant tumor growth. However, p53 status had no effect on tumor mutation burden or single base substitution signatures in POLE mutant tumors from mice or humans. Pten has important roles in maintaining genome stability. We find that PTEN mutations are highly enriched in human POLE mutant tumors, including many in POLE signature contexts. One such signature mutation, PTEN-F341V, was previously shown in a mouse model to specifically decrease nuclear Pten and lead to increased DNA damage. We found tumors in Pole +/P286R mice that spontaneously acquired PtenF341V mutations and were associated with significantly reduced nuclear Pten and elevated DNA damage. Re-analysis of human TCGA (The Cancer Genome Atlas) data showed that all PTEN-F341V mutations occurred in tumors with mutations in POLE. Taken together with recent published work, our results support the idea that development of POLE mutant tumors may involve disabling surveillance of nuclear DNA damage in addition to POLE-mediated hypermutagenesis.

3.
Science ; 369(6501): 320-325, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32675374

RESUMO

Restricted V(D)J recombination during fetal development was postulated to limit antibody repertoire breadth and prevent autoimmunity. However, newborn serum contains abundant autoantibodies, suggesting that B cell tolerance during gestation is not yet fully established. To investigate this apparent paradox, we evaluated the reactivities of more than 450 antibodies cloned from single B cells from human fetal liver, bone marrow, and spleen. We found that incomplete B cell tolerance in early human fetal life favored the accumulation of polyreactive B cells that bound both apoptotic cells and commensal bacteria from healthy adults. Thus, the restricted fetal preimmune repertoire contains potentially beneficial self-reactive innate-like B cell specificities that may facilitate the removal of apoptotic cells during development and shape gut microbiota assembly after birth.


Assuntos
Anticorpos/imunologia , Linfócitos B/imunologia , Feto/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Autoimunidade , Bactérias/imunologia , Feminino , Humanos , Imunidade Inata , Especificidade de Órgãos , Gravidez , Recombinação V(D)J
4.
Sci Rep ; 9(1): 13574, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537840

RESUMO

Immunoglobulin A is the dominant antibody isotype found in mucosal secretions and enforces host-microbiota symbiosis in mice, yet selective IgA-deficiency (sIgAd) in humans is often described as asymptomatic. Here, we determined the effects of IgA deficiency on human gut microbiota composition and evaluated the possibility that mucosal secretion of IgM can compensate for a lack of secretory IgA. We used 16S rRNA gene sequencing and bacterial cell sorting to evaluate gut microbiota composition and taxa-specific antibody coating of the gut microbiota in 15 sIgAd subjects and matched controls. Despite the secretion of compensatory IgM into the gut lumen, sIgAd subjects displayed an altered gut microbiota composition as compared to healthy controls. These alterations were characterized by a trend towards decreased overall microbial diversity as well as significant shifts in the relative abundances of specific microbial taxa. While secretory IgA in healthy controls targeted a defined subset of the microbiota via high-level coating, compensatory IgM in sIgAd subjects showed less specificity than IgA and bound a broader subset of the microbiota. We conclude that IgA plays a critical and non-redundant role in controlling gut microbiota composition in humans and that secretory IgA has evolved to maintain a diverse and stable gut microbial community.


Assuntos
Bactérias/classificação , Disbiose/imunologia , Imunoglobulina A Secretora/metabolismo , Imunoglobulina M/metabolismo , Adulto , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , DNA Ribossômico/genética , Disbiose/microbiologia , Feminino , Humanos , Masculino , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA