Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958839

RESUMO

Urine-derived stem cells (UdSCs) possess a remarkable anti-inflammatory and immune-modulating activity. However, the clinical significance of UdSCs in autoimmune inflammatory diseases such as rheumatoid arthritis (RA) is yet to be explored. Hence, we tested the UdSCs response to an articular RA microenvironment. To simulate the inflamed RA joint more authentically in vitro, we treated cells with rheumatoid synovial fluids (RASFs) collected from RA patients, serum deprivation, acidosis (pH 7.0 and 6.5), and their combinations. Firstly, the RASFs pro-inflammatory status was assessed by cytokine quantification. Then, UdSCs were exposed to the RA environmental factors for 48 h and cell proliferation, gene expression and secretion of immunomodulatory factors were evaluated. The immunosuppressive potential of pre-conditioned UdSCs was also assessed via co-cultivation with activated peripheral blood mononuclear cells (PBMCs). In all experimental conditions, UdSCs' proliferation was not affected. Conversely, extracellular acidosis considerably impaired the viability/proliferation of adipose tissue-derived stem cells (ATSCs). In the majority of cases, exposure to RA components led to the upregulated expression of IL-6, TSG6, ICAM-1, VCAM-1, and PD-L1, all involved in immunomodulation. Upon RASFs and acidic stimulation, UdSCs secreted higher levels of immunomodulatory cytokines: IL-6, IL-8, MCP-1, RANTES, GM-CSF, and IL-4. Furthermore, RASFs and combined pretreatment with RASFs and acidosis promoted the UdSCs-mediated immunosuppression and the proliferation of activated PBMCs was significantly inhibited. Altogether, our data indicate that the RA microenvironment certainly has the capacity to enhance UdSCs' immunomodulatory function. For potential preclinical/clinical applications, the intra-articular injection might be a reasonable approach to maximize UdSCs' therapeutic efficiency in the RA treatment.


Assuntos
Acidose , Artrite Reumatoide , Humanos , Líquido Sinovial/metabolismo , Membrana Sinovial/metabolismo , Leucócitos Mononucleares/metabolismo , Interleucina-6/metabolismo , Artrite Reumatoide/tratamento farmacológico , Citocinas/metabolismo , Inflamação/metabolismo , Células-Tronco/metabolismo , Imunomodulação , Acidose/metabolismo , Concentração de Íons de Hidrogênio , Fibroblastos/metabolismo , Células Cultivadas
2.
Life Sci ; 346: 122647, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614298

RESUMO

Mesenchymal/medicinal stem/signaling cells (MSCs) have emerged as a promising treatment option for various disorders. However, the donor's age, advanced stage of disease, and prolonged in vitro expansion often diminish the innate regenerative potential of MSCs. Besides that, the absence of MSCs' comprehensive "pre-admission testing" can result in the injection of cells with reduced viability and function, which may negatively affect the overall outcome of MSC-based therapies. It is, therefore, essential to develop effective strategies to improve the impaired biological performance of MSCs. This review focuses on the comprehensive characterization of various methods of external MSCs stimulation (hypoxia, heat shock, caloric restriction, acidosis, 3D culture, and application of extracellular matrix) that augment their medicinal potential. To emphasize the significance of MSCs priming, we summarize the effects of individual and combined preconditioning approaches, highlighting their impact on MSCs' response to either physiological or pathological conditions. We further investigate the synergic action of exogenous factors to maximize MSCs' therapeutic potential. Not to omit the field of tissue engineering, the application of pretreated MSCs seeded on scaffolds is discussed as well.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos
3.
Life (Basel) ; 12(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36556431

RESUMO

Diseases associated with articular cartilage disintegration or loss are still therapeutically challenging. The traditional treatment approaches only alleviate the symptoms while potentially causing serious side effects. The limited self-renewal potential of articular cartilage provides opportunities for advanced therapies involving mesenchymal stem cells (MSCs) that are characterized by a remarkable regenerative capacity. The chondrogenic potential of MSCs is known to be regulated by the local environment, including soluble factors and the less discussed extracellular matrix (ECM) components. This review summarizes the process of chondrogenesis, and also the biological properties of the ECM mediated by mechanotransduction as well as canonical and non-canonical signaling. Our focus is also on the influence of the ECM's physical parameters, molecular composition, and chondrogenic factor affinity on the adhesion, survival, and chondrogenic differentiation of MSCs. These basic biological insights are crucial for a more precise fabrication of ECM-mimicking hydrogels to improve cartilage tissue reconstruction. Lastly, we provide an overview of hydrogel classification and characterization. We also include the results from preclinical models combining MSCs with hydrogels for the treatment of cartilage defects, to support clinical application of this construct. Overall, it is believed that the proper combination of MSCs, hydrogels, and chondrogenic factors can lead to complex cartilage regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA