Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 602(7896): 240-244, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35140385

RESUMO

Ferroics, especially ferromagnets, can form complex topological spin structures such as vortices1 and skyrmions2,3 when subjected to particular electrical and mechanical boundary conditions. Simple vortex-like, electric-dipole-based topological structures have been observed in dedicated ferroelectric systems, especially ferroelectric-insulator superlattices such as PbTiO3/SrTiO3, which was later shown to be a model system owing to its high depolarizing field4-8. To date, the electric dipole equivalent of ordered magnetic spin lattices driven by the Dzyaloshinskii-Moriya interaction (DMi)9,10 has not been experimentally observed. Here we examine a domain structure in a single PbTiO3 epitaxial layer sandwiched between SrRuO3 electrodes. We observe periodic clockwise and anticlockwise ferroelectric vortices that are modulated by a second ordering along their toroidal core. The resulting topology, supported by calculations, is a labyrinth-like pattern with two orthogonal periodic modulations that form an incommensurate polar crystal that provides a ferroelectric analogue to the recently discovered incommensurate spin crystals in ferromagnetic materials11-13. These findings further blur the border between emergent ferromagnetic and ferroelectric topologies, clearing the way for experimental realization of further electric counterparts of magnetic DMi-driven phases.

2.
J Synchrotron Radiat ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771778

RESUMO

Nanoscale structural and electronic heterogeneities are prevalent in condensed matter physics. Investigating these heterogeneities in 3D has become an important task for understanding material properties. To provide a tool to unravel the connection between nanoscale heterogeneity and macroscopic emergent properties in magnetic materials, scanning transmission X-ray microscopy (STXM) is combined with X-ray magnetic circular dichroism. A vector tomography algorithm has been developed to reconstruct the full 3D magnetic vector field without any prior noise assumptions or knowledge about the sample. Two tomographic scans around the vertical axis are acquired on single-crystalline Nd2Fe14B pillars tilted at two different angles, with 2D STXM projections recorded using a focused 120 nm X-ray beam with left and right circular polarization. Image alignment and iterative registration have been implemented based on the 2D STXM projections for the two tilts. Dichroic projections obtained from difference images are used for the tomographic reconstruction to obtain the 3D magnetization distribution at the nanoscale.

3.
Phys Rev Lett ; 129(18): 187201, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374692

RESUMO

The number of atomic layers confined in a two-dimensional structure is crucial for the electronic and magnetic properties. Single-layer and bilayer J_{eff}=1/2 square lattices are well-known examples where the presence of the extra layer turns the XY anisotropy to the c-axis anisotropy. We report on experimental realization of a hybrid SrIrO_{3}/SrTiO_{3} superlattice that integrates monolayer and bilayer square lattices in one layered structure. By synchrotron x-ray diffraction, resonant x-ray magnetic scattering, magnetization, and resistivity measurements, we found that the hybrid superlattice exhibits properties that are distinct from both the single-layer and bilayer systems and cannot be explained by a simple addition of them. In particular, the entire hybrid superlattice orders simultaneously through a single antiferromagnetic transition at temperatures similar to the bilayer system but with all the J_{eff}=1/2 moments mainly pointing in the ab plane similar to the single-layer system. The results show that bringing monolayer and bilayer with orthogonal properties in proximity to each other in a hybrid superlattice structure is a powerful way to stabilize a unique state not obtainable in a uniform structure.

4.
Phys Rev Lett ; 122(12): 123608, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30978038

RESUMO

By embedding a thin layer of tantalum in an x-ray cavity, we observe a change in the spectral characteristics of an inner-shell transition of the metal. The interaction between the cavity mode vacuum and the L_{III}-edge transition is enhanced, permitting the observation of the collective Lamb shift, superradiance, and a Fano-like cavity-resonance interference effect. This experiment demonstrates the feasibility of cavity quantum electrodynamics with electronic resonances in the x-ray range with applications to manipulating and probing the electronic structure of condensed matter with high-resolution x-ray spectroscopy in an x-ray cavity setting.

5.
Nano Lett ; 18(1): 101-108, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29283268

RESUMO

We report on a growth study of self-catalyzed GaAs nanowires based on time-resolved in situ X-ray structure characterization during molecular-beam-epitaxy in combination with ex situ scanning-electron-microscopy. We reveal the evolution of nanowire radius and polytypism and distinguish radial growth processes responsible for tapering and side-wall growth. We interpret our results using a model for diameter self-stabilization processes during growth of self-catalyzed GaAs nanowires including the shape of the liquid Ga-droplet and its evolution during growth.

6.
Phys Rev Lett ; 114(9): 097601, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793851

RESUMO

High piezoelectric activity of many ferroelectrics has been the focus of numerous recent studies. The structural origin of this activity remains poorly understood due to a lack of appropriate experimental techniques and mixing of different mechanisms related to ferroelectricity and ferroelasticity. Our work reports on the study of a uniaxial Sr_{0.5}Ba_{0.5}Nb_{2}O_{6} ferroelectric where the formation of regions with different spontaneous strains is ruled out by the symmetry and where the interrelation between piezoelectricity and ferroelectricity can be inspected in an isolated fashion. We performed x-ray diffraction experiments on a single crystalline sample under alternating electric field and observed an unknown hidden-in-the-bulk mechanism, which suggests that the highest piezoelectric activity is realized in the volumes where nucleation of small ferroelectric domains takes place. This new mechanism creates a novel roadmap for designing materials with enhanced piezoelectric properties.

7.
Struct Dyn ; 9(4): 045101, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35909634

RESUMO

Time-resolved x-ray diffraction has been used to measure the low-temperature thermal transport properties of a Pt/Gd3Fe5O12//Gd3Ga5O12 metal/oxide heterostructure relevant to applications in spin caloritronics. A pulsed femtosecond optical signal produces a rapid temperature rise in the Pt layer, followed by heat transport into the Gd3Fe5O12 (GdIG) thin film and the Gd3Ga5O12 (GGG) substrate. The time dependence of x-ray diffraction from the GdIG layer was tracked using an accelerator-based femtosecond x-ray source. The ultrafast diffraction measurements probed the intensity of the GdIG (1 -1 2) x-ray reflection in a grazing-incidence x-ray diffraction geometry. The comparison of the variation of the diffracted x-ray intensity with a model including heat transport and the temperature dependence of the GdIG lattice parameter allows the thermal conductance of the Pt/GdIG and GdIG//GGG interfaces to be determined. Complementary synchrotron x-ray diffraction studies of the low-temperature thermal expansion properties of the GdIG layer provide a precise calibration of the temperature dependence of the GdIG lattice parameter. The interfacial thermal conductance of the Pt/GdIG and GdIG//GGG interfaces determined from the time-resolved diffraction study is of the same order of magnitude as previous reports for metal/oxide and epitaxial dielectric interfaces. The thermal parameters of the Pt/GdIG//GGG heterostructure will aid in the design and implementation of thermal transport devices and nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA