Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(22): 225709, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32167935

RESUMO

Micro four-point probes (M4PP) provide rapid and automated lithography-free transport properties of planar surfaces including two-dimensional materials. We perform sheet conductance wafer maps of graphene directly grown on a 100 mm diameter SiC wafer using a multiplexed seven-point probe with minor additional measurement time compared to a four-point probe. Comparing the results of three subprobes we find that compared to a single-probe result, our measurement yield increases from 72%-84% to 97%. The additional data allows for correlation analysis between adjacent subprobes, that must measure the same values in case the sample is uniform on the scale of the electrode pitch. We observe that the relative difference in measured sheet conductance between two adjacent subprobes increase in the transition between large and low conductance regions. We mapped sheet conductance of graphene as it changed over several weeks. Terahertz time-domain spectroscopy conductivity maps both before and after M4PP mapping showed no significant change due to M4PP measurement, with both methods showing the same qualitative changes over time.

2.
Nanotechnology ; 29(30): 305302, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-29737307

RESUMO

Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm-2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

3.
Opt Lett ; 42(8): 1592-1595, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28409806

RESUMO

In this Letter, we demonstrate an all-polarization-maintaining, stretched-pulse Tm-doped fiber laser generating ∼200 fs pulses centered at 1945 nm. As a saturable absorber, a graphene/poly(methyl methacrylate) composite was used. To the best of our knowledge, this is the first demonstration of stretched-pulse operation of a graphene-based fiber laser at 2 µm.

4.
Opt Express ; 24(18): 20359-64, 2016 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607642

RESUMO

We report on the generation of noise-like pulse (NLP) trains in a Tm-doped fiber laser mode-locked by multilayer graphene saturable absorber. The spectral bandwidth obtained directly from the oscillator exceeds 60 nm, centered at 1950 nm, with 23.5 MHz repetition rate. The pulses were also amplified in a fully fiberized amplifier based on a double-cladding Tm-doped fiber. The system was capable of delivering 1.21 W of average power, which corresponds to 51.5 nJ energy stored in the noise-like bundle. We believe that the presented source might serve as a pump for supercontinuum generation in highly nonlinear fibers.

5.
Opt Lett ; 41(11): 2592-5, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27244422

RESUMO

In this Letter, we demonstrate a graphene mode-locked, all-fiber Ho-doped fiber laser generating 1.3 nJ energy pulses directly from the oscillator. The graphene used as a saturable absorber was obtained via chemical vapor deposition on copper substrate and immersed in a poly(methyl methacrylate) support. The laser generated ultrashort soliton pulses at 2080 nm with bandwidth up to 6.1 nm. The influence of the output coupling ratio and the SA modulation depth on the mode-locking performance was also investigated.

6.
Opt Express ; 23(21): 27503-8, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26480410

RESUMO

In this paper a stretched-pulse, mode-locked Er-doped fiber laser based on graphene saturable absorber (SA) is presented. A 60 layer graphene/polymer composite was used as a SA. The all-fiber dispersion managed laser resonator with the repetition frequency of 21.15 MHz allows for Gaussian pulses generation with the full width at half maximum (FWHM) of 48 nm. The generated chirped pulses were compressed outside the cavity to the 88 fs using a piece of standard single mode fiber. The average output power and pulse energy were of 1.5 mW and 71 pJ, respectively.

7.
Opt Express ; 23(24): 31446-51, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26698769

RESUMO

We report on generation of 260 fs-short pulses with energy of 1.1 nJ from a fully fiberized, monolithic Tm-doped fiber laser system. The design comprises a simple, graphene-based ultrafast oscillator and an integrated all-fiber chirped pulse amplifier (CPA). The system generates 110 mW of average power at 100.25 MHz repetition rate and central wavelength of 1968 nm. This is, to our knowledge, the highest pulse energy generated from a fully fiberized sub-300 fs Tm-doped laser, without the necessity of using grating-based dispersion compensation. Such compact, robust and cost-effective system might serve as a seed source for nonlinear frequency conversion or mid-infrared supercontinuum generation.

8.
Opt Express ; 23(7): 9339-46, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968764

RESUMO

We report an all-fiber, all-polarization maintaining (PM) ultrafast Tm-doped fiber laser mode-locked by a multilayer graphene-based saturable absorber (SA). The laser emits 603 fs-short pulses centered at 1876 nm wavelength with 6.6 nm of bandwidth and 41 MHz repetition rate. Graphene used as saturable absorber was obtained via chemical vapor deposition (CVD) on copper substrate and immersed in a poly(methylmethacrylate) (PMMA) support, forming a stable, free-standing foil containing 12 graphene layers, suitable for the use in a fiber laser. The generated 603 fs pulses are the shortest reported pulses achieved from a Tm-doped laser mode-locked by graphene saturable absorber so far. Additionally, this is the first demonstration of an all-PM Tm-doped fiber laser incorporating a graphene-based SA. Such cost-effective, compact and stable fiber lasers might be considered as sources usable in nonlinear frequency conversion, mid-infrared spectroscopy and remote sensing.

9.
Opt Express ; 23(20): 26639-50, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480176

RESUMO

We present a new approach to remove monolayer graphene transferred on top of a silicon-on-insulator (SOI) photonic integrated chip. Femtosecond laser ablation is used for the first time to remove graphene from SOI waveguides, whereas oxygen plasma etching through a metal mask is employed to peel off graphene from the grating couplers attached to the waveguides. We show by means of Raman spectroscopy and atomic force microscopy that the removal of graphene is successful with minimal damage to the underlying SOI waveguides. Finally, we employ both removal techniques to measure the contribution of graphene to the loss of grating-coupled graphene-covered SOI waveguides using the cut-back method.

10.
Opt Express ; 22(5): 5536-43, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663894

RESUMO

In this work we present for the first time, to the best of our knowledge, a passively synchronized thulium (Tm) and erbium (Er) doped fiber laser mode-locked by a common graphene saturable absorber (GSA). The laser consists of two ring resonators combined with a 90 cm long common fiber branch incorporating the saturable absorber (SA). Such laser generates optical solitons centered at 1558.5 nm and 1938 nm with pulse durations of 915 fs and 1.57 ps, respectively. Both laser loops were passively synchronized at repetition frequency of 20.5025 MHz by nonlinear interaction (cross phase modulation, XPM) in common fiber branch between generated pulses. The maximum cavity mismatch of the Er-laser in synchronization regime was 0.78 mm. The synchronization mechanism was also investigated. We demonstrate that the third order nonlinearities of graphene enhance the synchronization range. In our case the range was increased about 85%. The integrated RMS timing jitter between the synchronized pulses was 67 fs.

11.
Sci Rep ; 14(1): 3163, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326379

RESUMO

Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude-Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects. We compare the charge carrier mean free path determined by THz-TDS with the average defect distance assessed by Raman spectroscopy, and the grain boundary dimensions as determined by transmission electron microscopy. The results indicate that even small angle orientation variations below 5° within graphene grains influence the scattering behavior, consistent with significant backscattering contributions from grain boundaries.

12.
Opt Express ; 21(10): 12797-802, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736498

RESUMO

We report an all-fiber Tm-doped fiber laser mode-locked by graphene saturable absorber. The laser emits 1.2 ps pulses at 1884 nm center wavelength with 4 nm of bandwidth and 20.5 MHz mode spacing. The graphene layers were grown on copper foils by chemical vapor deposition (CVD) and transferred onto the fiber connector end. Up to date this is the shortest reported pulse duration achieved from a Tm-doped laser mode-locked by graphene saturable absorber. Such cost-effective and stable fiber lasers might be considered as sources for mid-infrared spectroscopy and remote sensing.


Assuntos
Cobre/química , Tecnologia de Fibra Óptica/instrumentação , Grafite/química , Lasers , Polimetil Metacrilato/química , Túlio/química , Absorção , Desenho de Equipamento , Análise de Falha de Equipamento , Gases/química
13.
Opt Express ; 21(16): 18994-9002, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938814

RESUMO

We present for the first time to the best of our knowledge an all-fiber thulium (Tm) and erbium (Er) doped fiber laser simultaneously mode-locked by a common graphene saturable absorber. The laser consists of two ring resonators combined with a common saturable absorber (SA). The generated optical solitons have a full width at half maximum (FWHM) of 3.9 nm and 4.2 nm for Tm- and Er-doped laser, respectively. The used graphene layers were grown on copper foils by chemical vapor deposition (CVD) and transferred onto the fiber connector end. Broadband and flat absorption spectrum of used SA supports mode-locked operation at 1565 nm and 1944 nm. The repetition frequency of the resonator with Er-doped fiber was 20.19 MHz while the Tm-doped resonator was around 1 m longer and resulted with repetition rate of 18.43 MHz. The reported experiment unambiguously confirms one of the biggest advantage of the carbon nanomaterial (in this case graphene) SAs over semiconductor saturable absorption mirrors (SESAM), which is broadband operation range, allowing to mode-lock two lasers spectrally separated by almost 400 nm.

14.
ACS Appl Mater Interfaces ; 15(28): 33838-33847, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37418753

RESUMO

Van der Waals heterostructures (vdWHSs) enable the fabrication of complex electronic devices based on two-dimensional (2D) materials. Ideally, these vdWHSs should be fabricated in a scalable and repeatable way and only in the specific areas of the substrate to lower the number of technological operations inducing defects and impurities. Here, we present a method of selective fabrication of vdWHSs via chemical vapor deposition by electron-beam (EB) irradiation. We distinguish two growth modes: positive (2D materials nucleate on the irradiated regions) on graphene and tungsten disulfide (WS2) substrates, and negative (2D materials do not nucleate on the irradiated regions) on the graphene substrate. The growth mode is controlled by limiting the air exposure of the irradiated substrate and the time between irradiation and growth. We conducted Raman mapping, Kelvin-probe force microscopy, X-ray photoelectron spectroscopy, and density-functional theory modeling studies to investigate the selective growth mechanism. We conclude that the selective growth is explained by the competition of three effects: EB-induced defects, adsorption of carbon species, and electrostatic interaction. The method here is a critical step toward the industry-scale fabrication of 2D-materials-based devices.

15.
J Nanosci Nanotechnol ; 11(4): 3358-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21776709

RESUMO

The surface resistance of Ag, Au and A1 thin conducting films deposited on low loss dielectric substrates at microwave frequencies using TE011 mode single post-dielectric resonator (10-13.22 GHz) was measured to calculate their conductivity in relation to layers thickness. This method enabling measurements near metal-insulator percolation transition was also applied for epitaxial graphene deposited on semi-insulating SiC. Moreover, effective microwave conductivity has been determined for intentionally made aluminum island structure where the DC conductivity is equal to zero. Special attention was paid to films thickness measurements which is critical for accuracy of sheet resistance calculation. Conductivity of thin metal layers and very thin graphene was compared.


Assuntos
Grafite/química , Membranas Artificiais , Metais/química , Modelos Químicos , Simulação por Computador , Condutividade Elétrica , Teste de Materiais , Micro-Ondas
16.
Small ; 6(24): 2877-84, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21053339

RESUMO

A stoichiometric derivative of graphene with a fluorine atom attached to each carbon is reported. Raman, optical, structural, micromechanical, and transport studies show that the material is qualitatively different from the known graphene-based nonstoichiometric derivatives. Fluorographene is a high-quality insulator (resistivity >10(12) Ω) with an optical gap of 3 eV. It inherits the mechanical strength of graphene, exhibiting a Young's modulus of 100 N m(-1) and sustaining strains of 15%. Fluorographene is inert and stable up to 400 °C even in air, similar to Teflon.


Assuntos
Grafite/química , Politetrafluoretileno/química , Halogenação , Microscopia Eletrônica de Transmissão , Análise Espectral Raman
17.
Opt Lett ; 35(20): 3336-8, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20967058

RESUMO

An ellipsometer with 3µm×5µm spot size constructed with a single focusing and imaging element is used to measure the layer number of exfoliated graphene on glass and expitaxial graphene on SiC. Ellipsometric sensitivity to graphene layer number increases with decreasing layer number and decreasing substrate refractive index. Single-atomic-layer sensitivity has been achieved. High spatial resolution imaging and ellipsometry is useful for rapid characterization of epitaxially grown graphene films.

18.
ACS Appl Mater Interfaces ; 12(40): 45101-45110, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32930568

RESUMO

In this work, we report the impact of substrate type on the morphological and structural properties of molybdenum disulfide (MoS2) grown by chemical vapor deposition (CVD). MoS2 synthesized on a three-dimensional (3D) substrate, that is, SiO2, in response to the change of the thermodynamic conditions yielded different grain morphologies, including triangles, truncated triangles, and circles. Simultaneously, MoS2 on graphene is highly immune to the modifications of the growth conditions, forming triangular crystals only. We explain the differences between MoS2 on SiO2 and graphene by the different surface diffusion mechanisms, namely, hopping and gas-molecule-collision-like mechanisms, respectively. As a result, we observe the formation of thermodynamically favorable nuclei shapes on graphene, while on SiO2, a full spectrum of domain shapes can be achieved. Additionally, graphene withstands the growth process well, with only slight changes in strain and doping. Furthermore, by the application of graphene as a growth substrate, we realize van der Waals epitaxy and achieve strain-free growth, as suggested by the photoluminescence (PL) studies. We indicate that PL, contrary to Raman spectroscopy, enables us to arbitrarily determine the strain levels in MoS2.

19.
ACS Appl Nano Mater ; 2(5): 2621-2633, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31157324

RESUMO

We performed scanning thermal microscopy measurements on single layers of chemical-vapor-deposited (CVD) graphene supported by different substrates, namely, SiO2, Al2O3, and PET using a double-scan technique to remove the contribution to the heat flux through the air and the cantilever. Then, by adopting a simple lumped-elements model, we developed a new method that allows determining, through a multistep numerical analysis, the equivalent thermal properties of thermally conductive coatings of nanometric thickness. In this specific case we found that our CVD graphene is "thermally equivalent", for heat injection perpendicular to the graphene planes, to a coating material of conductivity k eff = 2.5 ± 0.3 W/m K and thickness t eff = 3.5 ± 0.3 nm in perfect contact with the substrate. For the SiO2 substrate, we also measured stacks made of 2- and 4-CVD monolayers, and we found that the effective thermal conductivity increases with increasing number of layers and, with a technologically achievable number of layers, is expected to be comparable to that of 1 order of magnitude-thicker metallic thin films. This study provides a powerful method for characterizing the thermal properties of graphene in view of several thermal management applications.

20.
Nat Commun ; 9(1): 2675, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29992967

RESUMO

Graphene is considered a record-performance nonlinear-optical material on the basis of numerous experiments. The observed strong nonlinear response ascribed to the refractive part of graphene's electronic third-order susceptibility χ(3) cannot, however, be explained using the relatively modest χ(3) value theoretically predicted for the 2D material. Here we solve this long-standing paradox and demonstrate that, rather than χ(3)-based refraction, a complex phenomenon which we call saturable photoexcited-carrier refraction is at the heart of nonlinear-optical interactions in graphene such as self-phase modulation. Saturable photoexcited-carrier refraction is found to enable self-phase modulation of picosecond optical pulses with exponential-like bandwidth growth along graphene-covered waveguides. Our theory allows explanation of these extraordinary experimental results both qualitatively and quantitatively. It also supports the graphene nonlinearities measured in previous self-phase modulation and self-(de)focusing (Z-scan) experiments. This work signifies a paradigm shift in the understanding of 2D-material nonlinearities and finally enables their full exploitation in next-generation nonlinear-optical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA