Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39028283

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) inhibit sympathetic reinnervation in rodent hearts post myocardial infarction (MI), causing regional hypo-innervation that is associated with supersensitivity of ß-adrenergic receptors and increased arrhythmia susceptibility. To investigate the role of CSPGs and hypo-innervation in the heart of larger mammals, we used a rabbit model of reperfused MI and tested electrophysiological responses to sympathetic nerve stimulation (SNS). Innervated hearts from MI and sham rabbits were optically mapped using voltage and Ca2+-sensitive dyes. SNS was performed with electrical stimulation of the spinal cord and ß-adrenergic responsiveness was tested using isoproterenol. Sympathetic nerve density and CSPG expression were evaluated using immunohistochemistry. CSPGs were robustly expressed in the infarct region of all MI hearts, and the presence of CSPGs was associated with reduced sympathetic nerve density in the infarct vs. remote region. Action potential duration (APD) dispersion and susceptibility to ventricular tachycardia/fibrillation (VT/VF) were increased with SNS in MI hearts but not in sham. SNS decreased APD80 in MI but not sham hearts, while isoproterenol decreased APD80 in both groups. Isoproterenol also shortened Ca2+ transient duration (CaTD80) in both groups but to a greater extent in MI hearts. Our data suggest sympathetic remodeling post-MI is similar between rodents and rabbits, with CSPGs associated with sympathetic hypo-innervation. Despite a reduction in sympathetic nerve density, the infarct region of MI hearts remained responsive to both physiological SNS and isoproterenol, potentially through preserved or elevated ß-adrenergic responsiveness, which may underly increased APD dispersion and susceptibility for VT/VF.

2.
Biomacromolecules ; 23(1): 67-76, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34647719

RESUMO

Herein, we describe a new technique, direct saturation compensated transfer (DISCO) NMR, to characterize protein-macromolecule interactions. DISCO enables the direct observation of intermolecular interactions and is used to investigate mucoadhesion, a type of polymer-protein interaction that is widely implemented in drug delivery but remains poorly understood. In a model system of bovine submaxillary mucin and poly(acrylic acid), DISCO identifies selective backbone interactions that facilitate mucoadhesion through chain interpenetration. DISCO demonstrated distinct patterns of molecular selectivity between mucoadhesive polymers when applied to hydroxypropyl cellulose and carboxymethyl cellulose and that functionalizing adhesive polymers with strongly interacting moieties may be detrimental to the overall adhesive interaction. Additionally, DISCO was used to estimate polymer-protein dissociation constants using individual proton signals as reporters. Overall, DISCO can be used as a label-free screening tool to generate polymer-specific binding fingerprints to map and quantify interactions between macromolecules.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Adesivos , Animais , Bovinos , Fenômenos Químicos , Espectroscopia de Ressonância Magnética , Polímeros/química
3.
Int J Mol Sci ; 22(16)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34445563

RESUMO

Choroid plexus (CP) sequesters cadmium and other metals, protecting the brain from these neurotoxins. These metals can induce cellular stress and modulate homeostatic functions of CP, such as solute transport. We previously showed in primary cultured neonatal rat CP epithelial cells (CPECs) that cadmium induced cellular stress and stimulated choline uptake at the apical membrane, which interfaces with cerebrospinal fluid in situ. Here, in CPECs, we characterized the roles of glutathione (GSH) and Zinc supplementation in the adaptive stress response to cadmium. Cadmium increased GSH and decreased the reduced GSH-to-oxidized GSH (GSSG) ratio. Heat shock protein-70 (Hsp70), heme oxygenase (HO-1), and metallothionein (Mt-1) were induced along with the catalytic and modifier subunits of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis. Inhibition of GCL by l-buthionine sulfoximine (BSO) enhanced stress protein induction and stimulation of choline uptake by cadmium. Zinc alone did not induce Hsp70, HO-1, or GCL subunits, or modulate choline uptake. Zinc supplementation during cadmium exposure attenuated stress protein induction and stimulation of choline uptake; this effect persisted despite inhibition of GSH synthesis. These data indicated up-regulation of GSH synthesis promotes adaptation to cadmium-induced cellular stress in CP, but Zinc may confer cytoprotection independent of GSH.


Assuntos
Cádmio/toxicidade , Colina/metabolismo , Plexo Corióideo/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Glutationa/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Zinco/administração & dosagem , Animais , Animais Recém-Nascidos , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Suplementos Nutricionais , Epitélio/metabolismo , Epitélio/patologia , Ratos , Ratos Sprague-Dawley
4.
Am J Physiol Heart Circ Physiol ; 318(3): H558-H565, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31975627

RESUMO

Cardiac sympathetic nerves undergo cholinergic transdifferentiation following reperfused myocardial infarction (MI), whereby the sympathetic nerves release both norepinephrine (NE) and acetylcholine (ACh). The functional electrophysiological consequences of post-MI transdifferentiation have never been explored. We performed MI or sham surgery in wild-type (WT) mice and mice in which choline acetyltransferase was deleted from adult noradrenergic neurons [knockout (KO)]. Electrophysiological activity was assessed with optical mapping of action potentials (AP) and intracellular Ca2+ transients (CaT) in innervated Langendorff-perfused hearts. KO MI hearts had similar NE content but reduced ACh content compared with WT MI hearts (0.360 ± 0.074 vs. 0.493 ± 0.087 pmol/mg; KO, n = 6; WT, n = 4; P < 0.05). KO MI hearts also had higher basal ex vivo heart rates versus WT MI hearts (328.5 ± 35.3 vs. 247.4 ± 62.4 beats/min; KO, n = 8; WT, n = 6; P < 0.05). AP duration at 80% repolarization was significantly shorter in the remote and border zones of KO MI versus WT MI hearts, whereas AP durations (APDs) were similar in infarct regions. This APD heterogeneity resulted in increased APD dispersion in the KO MI versus WT MI hearts (11.9 ± 2.7 vs. 8.2 ± 2.3 ms; KO, n = 8; WT, n = 6; P < 0.05), which was eliminated with atropine. CaT duration at 80% and CaT alternans magnitude were similar between groups both with and without sympathetic nerve stimulation. These results indicate that cholinergic transdifferentiation following MI prolongs APD in the remote and border zone and reduces APD heterogeneity.NEW & NOTEWORTHY Cardiac sympathetic neurons undergo cholinergic transdifferentiation following myocardial infarction; however, the electrophysiological effects of corelease of norepinephrine and acetylcholine (ACh) have never been assessed. Using a mouse model in which choline acetyltransferase was deleted from adult noradrenergic neurons and optical mapping of innervated hearts, we found that corelease of ACh reduces dispersion of action potential duration, which may be antiarrhythmic.


Assuntos
Potenciais de Ação/fisiologia , Sinalização do Cálcio/fisiologia , Transdiferenciação Celular/fisiologia , Neurônios Colinérgicos/metabolismo , Infarto do Miocárdio/fisiopatologia , Sistema Nervoso Simpático/metabolismo , Neurônios Adrenérgicos/metabolismo , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Coração/inervação , Camundongos , Camundongos Knockout , Infarto do Miocárdio/metabolismo
5.
J Physiol ; 597(15): 3867-3883, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31215643

RESUMO

KEY POINTS: Cardiac electrophysiology and Ca2+ handling change rapidly during the fight-or-flight response to meet physiological demands. Despite dramatic differences in cardiac electrophysiology, the cardiac fight-or-flight response is highly conserved across species. In this study, we performed physiological sympathetic nerve stimulation (SNS) while optically mapping cardiac action potentials and intracellular Ca2+ transients in innervated mouse and rabbit hearts. Despite similar heart rate and Ca2+ handling responses between mouse and rabbit hearts, we found notable species differences in spatio-temporal repolarization dynamics during SNS. Species-specific computational models revealed that these electrophysiological differences allowed for enhanced Ca2+ handling (i.e. enhanced inotropy) in each species, suggesting that electrophysiological responses are fine-tuned across species to produce optimal cardiac fight-or-flight responses. ABSTRACT: Sympathetic activation of the heart results in positive chronotropy and inotropy, which together rapidly increase cardiac output. The precise mechanisms that produce the electrophysiological and Ca2+ handling changes underlying chronotropic and inotropic responses have been studied in detail in isolated cardiac myocytes. However, few studies have examined the dynamic effects of physiological sympathetic nerve activation on cardiac action potentials (APs) and intracellular Ca2+ transients (CaTs) in the intact heart. Here, we performed bilateral sympathetic nerve stimulation (SNS) in fully innervated, Langendorff-perfused rabbit and mouse hearts. Dual optical mapping with voltage- and Ca2+ -sensitive dyes allowed for analysis of spatio-temporal AP and CaT dynamics. The rabbit heart responded to SNS with a monotonic increase in heart rate (HR), monotonic decreases in AP and CaT duration (APD, CaTD), and a monotonic increase in CaT amplitude. The mouse heart had similar HR and CaT responses; however, a pronounced biphasic APD response occurred, with initial prolongation (50.9 ± 5.1 ms at t = 0 s vs. 60.6 ± 4.1 ms at t = 15 s, P < 0.05) followed by shortening (46.5 ± 9.1 ms at t = 60 s, P = NS vs. t = 0). We determined the biphasic APD response in mouse was partly due to dynamic changes in HR during SNS and was exacerbated by ß-adrenergic activation. Simulations with species-specific cardiac models revealed that transient APD prolongation in mouse allowed for greater and more rapid CaT responses, suggesting more rapid increases in contractility; conversely, the rabbit heart requires APD shortening to produce optimal inotropic responses. Thus, while the cardiac fight-or-flight response is highly conserved between species, the underlying mechanisms orchestrating these effects differ significantly.


Assuntos
Potenciais de Ação , Frequência Cardíaca , Coração/fisiologia , Modelos Cardiovasculares , Estresse Fisiológico , Animais , Sinalização do Cálcio , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Coelhos , Sistema Nervoso Simpático/fisiologia
6.
J Physiol ; 596(17): 3977-3991, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29938794

RESUMO

KEY POINTS: Ageing results in changes to cardiac electrophysiology, Ca2+ handling, and ß-adrenergic responsiveness. Sympathetic neurodegeneration also occurs with age, yet detailed action potential and Ca2+ handling responses to physiological sympathetic nerve stimulation (SNS) in the aged heart have not been assessed. Optical mapping in mouse hearts with intact sympathetic innervation revealed reduced responsiveness to SNS in the aged atria (assessed by heart rate) and aged ventricles (assessed by action potentials and Ca2+ transients). Sympathetic nerve density and noradrenaline content were reduced in aged ventricles, but noradrenaline content was preserved in aged atria. These results demonstrate that reduced responsiveness to SNS in the atria may be primarily due to decreased ß-adrenergic receptor responsiveness, whereas reduced responsiveness to SNS in the ventricles may be primarily due to neurodegeneration. ABSTRACT: The objective of this study was to determine how age-related changes in sympathetic structure and function impact cardiac electrophysiology and intracellular Ca2+ handling. Innervated hearts from young (3-4 months, YWT, n = 10) and aged (20-24 months, AGED, n = 11) female mice (C57Bl6) were optically mapped using the voltage (Vm ,)- and calcium (Ca2+ )-sensitive indicators Rh237 and Rhod2-AM. Sympathetic nerve stimulation (SNS) was performed at the spinal cord (T1-T3). ß-Adrenergic responsiveness was assessed with isoproterenol (1 µM, ISO). Sympathetic nerve density and noradrenaline content were also quantified. Stimulation thresholds necessary to produce a defined increase in heart rate (HR) with SNS were higher in AGED vs. YWT hearts (5.4 ± 0.4 vs. 3.8 ± 0.4 Hz, P < 0.05). Maximal HR with SNS was lower in AGED vs. YWT (20.5 ± 3.41% vs. 73.0 ± 7.63% increase, P < 0.05). ß-Adrenergic responsiveness of the atria (measured as percentage increase in HR with ISO) was decreased in AGED vs. YWT hearts (75.3 ± 22.5% vs. 148.5 ± 19.8%, P < 0.05). SNS significantly increased action potential duration (APD) in YWT but not AGED. Ca2+ transient durations and rise times were unchanged by SNS, yet AGED hearts had an increased susceptibility to Ca2+ alternans and ventricular arrhythmias. ß-Adrenergic responsiveness of all ventricular parameters were similar between AGED and YWT. Sympathetic nerve density and noradrenaline content were decreased in the AGED ventricle, but not atria, compared to YWT. These data suggest that decreased responsiveness to SNS in the aged atria may be primarily due to decreased ß-adrenergic responsiveness, whereas decreased responsiveness to SNS in the aged ventricles may be primarily due to nerve degeneration.


Assuntos
Arritmias Cardíacas/patologia , Cálcio/metabolismo , Estimulação Elétrica , Fibrose/patologia , Miócitos Cardíacos/fisiologia , Sistema Nervoso Simpático , Potenciais de Ação , Agonistas Adrenérgicos beta/farmacologia , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Eletrofisiologia , Feminino , Fibrose/etiologia , Fibrose/metabolismo , Frequência Cardíaca , Isoproterenol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 314(3): H415-H423, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29101167

RESUMO

Cardiac sympathetic nerves stimulate heart rate and force of contraction. Myocardial infarction (MI) leads to the loss of sympathetic nerves within the heart, and clinical studies have indicated that sympathetic denervation is a risk factor for arrhythmias and cardiac arrest. Two distinct types of denervation have been identified in the mouse heart after MI caused by ischemia-reperfusion: transient denervation of peri-infarct myocardium and sustained denervation of the infarct. Sustained denervation is linked to increased arrhythmia risk, but it is not known whether acute nerve loss in peri-infarct myocardium also contributes to arrhythmia risk. Peri-infarct sympathetic denervation requires the p75 neurotrophin receptor (p75NTR), but removal of p75NTR alters the pattern of sympathetic innervation in the heart and increases spontaneous arrhythmias. Therefore, we targeted the p75NTR coreceptor sortilin and the p75NTR-induced protease tumor necrosis factor-α-converting enzyme/A disintegrin and metalloproteinase domain 17 (TACE/ADAM17) to selectively block peri-infarct denervation. Sympathetic nerve density was quantified using immunohistochemistry for tyrosine hydroxylase. Genetic deletion of sortilin had no effect on the timing or extent of axon degeneration, but inhibition of TACE/ADAM17 with the protease inhibitor marimastat prevented the loss of axons from viable myocardium. We then asked whether retention of nerves in peri-infarct myocardium had an impact on cardiac electrophysiology 3 days after MI using ex vivo optical mapping of transmembrane potential and intracellular Ca2+. Preventing acute denervation of viable myocardium after MI did not significantly alter cardiac electrophysiology or Ca2+ handling, suggesting that transient denervation at this early time point has minimal impact on arrhythmia risk. NEW & NOTEWORTHY Sympathetic denervation after myocardial infarction is a risk factor for arrhythmias. We asked whether transient loss of nerves in viable myocardium contributed to arrhythmia risk. We found that targeting protease activity could prevent acute peri-infarct denervation but that it did not significantly alter cardiac electrophysiology or Ca2+ handling 3 days after myocardial infarction.


Assuntos
Arritmias Cardíacas/etiologia , Coração/inervação , Infarto do Miocárdio/complicações , Miocárdio/patologia , Sistema Nervoso Simpático/fisiopatologia , Proteína ADAM17/metabolismo , Potenciais de Ação , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Modelos Animais de Doenças , Frequência Cardíaca , Preparação de Coração Isolado , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo , Receptores de Fator de Crescimento Neural/deficiência , Receptores de Fator de Crescimento Neural/genética , Sistema Nervoso Simpático/metabolismo , Fatores de Tempo , Sobrevivência de Tecidos
8.
J Mol Cell Cardiol ; 91: 114-22, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26739214

RESUMO

Optimal healing of damaged tissue following myocardial infarction (MI) requires a coordinated cellular response that can be divided into three phases: inflammatory, proliferative/reparative, and maturation. The inflammatory phase, characterized by rapid influx of cytokines, chemokines, and immune cells, is critical to the removal of damaged tissue. The onset of the proliferative/reparative phase is marked by increased proliferation of myofibroblasts and secretion of collagen to replace dead tissue. Lastly, crosslinking of collagen fibers and apoptosis of immune cells marks the maturation phase. Excessive inflammation or fibrosis has been linked to increased incidence of arrhythmia and other MI-related pathologies. This review describes the roles of inflammation and fibrosis in arrhythmogenesis and prospective therapies for anti-arrhythmic treatment.


Assuntos
Arritmias Cardíacas/genética , Regulação da Expressão Gênica , Infarto do Miocárdio/genética , Miocárdio/metabolismo , Transdução de Sinais , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Cálcio/metabolismo , Fibrose , Humanos , Inflamação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Transporte de Íons , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895350

RESUMO

Chondroitin sulfate proteoglycans (CSPGs) inhibit sympathetic reinnervation in rodent hearts post myocardial infarction (MI), causing regional hypo-innervation that is associated with supersensitivity of ß-adrenergic receptors and increased arrhythmia susceptibility. To investigate the role of CSPGs and hypo-innervation in the heart of larger mammals, we used a rabbit model of reperfused MI and tested electrophysiological responses to sympathetic nerve stimulation (SNS). Innervated hearts from MI and sham rabbits were optically mapped using voltage and Ca 2+ -sensitive dyes. SNS was performed with electrical stimulation of the spinal cord and ß-adrenergic responsiveness was tested using isoproterenol. Sympathetic nerve density and CSPG expression were evaluated using immunohistochemistry. CSPGs were robustly expressed in the infarct and border zone of all MI hearts, and the presence of CSPGs was associated with reduced sympathetic nerve density in the infarct vs. remote region. Action potential duration (APD) dispersion and susceptibility to ventricular tachycardia/fibrillation (VT/VF) were increased with SNS in MI hearts but not in sham. SNS decreased APD 80 in MI but not sham hearts, while isoproterenol decreased APD 80 in both groups. Isoproterenol also shortened Ca 2+ transient duration (CaTD 80 ) in both groups but to a greater extent in MI hearts. Our data suggest sympathetic remodeling post-MI is similar between species, with CSPGs associated with sympathetic hypo-innervation. Despite a reduction in sympathetic nerve density, the infarct region of MI hearts remained responsive to both physiological SNS and isoproterenol, potentially through preserved or elevated ß-adrenergic responsiveness, which may underly increased APD dispersion and susceptibility for VT/VF. NEW & NOTEWORTHY: Here we show that CSPGs are present in the infarcts of rabbit hearts with reperfused MI, where they are associated with reduced sympathetic nerve density. Despite hypo-innervation, sympathetic responsiveness is maintained or enhanced in MI rabbit hearts, which also demonstrate increased APD dispersion and tendency for arrhythmias following sympathetic modulation. Together, this study indicates that the mechanisms of sympathetic remodeling post-MI are similar between species, with hypo-innervation likely associated with enhanced ß-adrenergic sensitivity.

10.
J Mater Chem B ; 11(42): 10121-10130, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37824091

RESUMO

Nanoparticle-based drug delivery systems have shown increasing popularity as a means to improve patient outcomes by improving the effectiveness of active pharmaceutical ingredients (APIs). Similarly, nanoparticles have shown success in targeting alternative routes of API administration, such as applying mucoadhesion or mucopenetration to mucosal drug delivery to enhance uptake. While there are many promising examples of mucoadhesive nanomedicines in literature, there are also many examples of contradictory mucoadhesive binding behavior, most prominently in cases using the same nanoparticle materials. We have uncovered mechanistic insights in polymer-protein binding systems using nOe transfer-based NMR and sought to leverage them to explore nanoparticle-protein interactions. We tested several polymer-coated nanoparticles and micellar polymer nanoparticles and evaluated their binding with mucin proteins. We uncovered that the composition and interaction intimacy of polymer moieties that promote mucin binding change when the polymers are incorporated onto nanoparticle surfaces compared to polymer in solution. This change from solution state to nanoparticle coating can enable switching of behavior of these materials from inert to binding, as we observed in polyvinyl pyrrolidone. We also found the nanoparticle core was influential in determining the binding fate of polymer materials, whereas the nanoparticle size did not possess a clear correlation in the ranges we tested (60-270 nm). These experiments demonstrate that identical polymers may switch their binding behavior to mucin as a function of conformational changes that are induced by incorporating the polymers onto the surface of nanoparticles. These NMR-derived insights could be further leveraged to optimize nanoparticle formulations and guide polymer-mediated mucoadhesion.


Assuntos
Nanopartículas , Polímeros , Humanos , Polímeros/química , Ligação Proteica , Proteínas/metabolismo , Espectroscopia de Ressonância Magnética , Mucinas/química , Nanopartículas/química
11.
Clin J Pain ; 37(2): 94-101, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177370

RESUMO

OBJECTIVE: The objective of this study was to evaluate the feasibility of using virtual reality (VR) for distraction during intravenous (IV) insertion in the pediatric emergency department (ED) and of conducting a full-scale randomized controlled trial. MATERIALS AND METHODS: Children aged 8 to 17 years old attending a tertiary care pediatric ED were randomized to interactive VR or an attention control (video on a tablet) for distraction during their IV insertion. Feasibility was determined by recruitment rates, acceptability of the intervention, response rates to outcome measures, and safety or technical problems. Satisfaction questionnaires and pain, fear, and distress scores were completed by the child, caregiver, nurse, and research assistant. Immersion in the intervention was rated by the child. Heart rate was measured. RESULTS: Children were recruited between February 2018 and May 2019. A total of 116 children were screened and 72.3% of eligible children were enrolled. Overall, 60 children were randomized to either VR (n=32) or attention control (n=28). Children, caregivers, and nurses were highly satisfied with both distraction methods. There were no significant safety, technical, or equipment issues. There was minimal disruption to clinical workflow in both groups due to study protocols. There was a clinically significant reduction in pain in the VR group. There was no significant difference in fear or distress. Children reported higher immersion in the VR environment. Heart rate increase from baseline was higher in the VR group. DISCUSSION: Our data support the feasibility of using VR for distraction during IV insertion and of conducting a full-scale randomized controlled trial. Identifying eligible patients and minimizing the number of outcome measures will be important considerations for future research.


Assuntos
Dor Processual , Realidade Virtual , Adolescente , Criança , Serviço Hospitalar de Emergência , Humanos , Manejo da Dor , Medição da Dor , Dor Processual/prevenção & controle , Projetos Piloto
12.
Sci Rep ; 10(1): 18801, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139790

RESUMO

Myocardial infarction (MI) can result in sympathetic nerve loss in the infarct region. However, the contribution of hypo-innervation to electrophysiological remodeling, independent from MI-induced ischemia and fibrosis, has not been comprehensively investigated. We present a novel mouse model of regional cardiac sympathetic hypo-innervation utilizing a targeted-toxin (dopamine beta-hydroxylase antibody conjugated to saporin, DBH-Sap), and measure resulting electrophysiological and Ca2+ handling dynamics. Five days post-surgery, sympathetic nerve density was reduced in the anterior left ventricular epicardium of DBH-Sap hearts compared to control. In Langendorff-perfused hearts, there were no differences in mean action potential duration (APD80) between groups; however, isoproterenol (ISO) significantly shortened APD80 in DBH-Sap but not control hearts, resulting in a significant increase in APD80 dispersion in the DBH-Sap group. ISO also produced spontaneous diastolic Ca2+ elevation in DBH-Sap but not control hearts. In innervated hearts, sympathetic nerve stimulation (SNS) increased heart rate to a lesser degree in DBH-Sap hearts compared to control. Additionally, SNS produced APD80 prolongation in the apex of control but not DBH-Sap hearts. These results suggest that hypo-innervated hearts have regional super-sensitivity to circulating adrenergic stimulation (ISO), while having blunted responses to SNS, providing important insight into the mechanisms of arrhythmogenesis following sympathetic nerve loss.


Assuntos
Eletrofisiologia Cardíaca , Coração/inervação , Receptores Adrenérgicos beta/fisiologia , Sistema Nervoso Simpático/patologia , Sistema Nervoso Simpático/fisiopatologia , Potenciais de Ação/efeitos dos fármacos , Animais , Arritmias Cardíacas/etiologia , Cálcio/metabolismo , Isoproterenol/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/metabolismo
13.
Circ Arrhythm Electrophysiol ; 13(9): e008093, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32706628

RESUMO

BACKGROUND: Cardiac gene expression and arrhythmia occurrence have time-of-day variation; however, daily changes in cardiac electrophysiology, arrhythmia susceptibility, and Ca2+ handling have not been characterized. Furthermore, how these patterns change with age is unknown. METHODS: Hearts were isolated during the light (zeitgeber time [ZT] 4 and ZT9) and dark cycle (ZT14 and ZT21) from adult (12-18 weeks) male mice. Hearts from aged (18-20 months) male mice were isolated at ZT4 and ZT14. All hearts were Langendorff-perfused for optical mapping with voltage- and Ca2+-sensitive dyes (n=4-7/group). Cardiac gene and protein expression were assessed with real-time polymerase chain reaction (n=4-6/group) and Western blot (n=3-4/group). RESULTS: Adult hearts had the shortest action potential duration (APD) and Ca2+ transient duration (CaTD) at ZT14 (APD80: ZT4: 45.4±4.1 ms; ZT9: 45.1±8.6 ms; ZT14: 34.7±4.2 ms; ZT21: 49.2±7.6 ms, P<0.05 versus ZT4 and ZT21; and CaTD80: ZT4: 70.1±3.3 ms; ZT9: 72.7±2.7 ms; ZT14: 64.3±3.3 ms; ZT21: 74.4±1.2 ms, P<0.05 versus other time points). The pacing frequency at which CaT alternans emerged was faster, and average CaT alternans magnitude was significantly reduced at ZT14 compared with the other time points. There was a trend for decreased spontaneous premature ventricular complexes and pacing-induced ventricular arrhythmias at ZT14, and the hearts at ZT14 had diminished responses to isoproterenol compared with ZT4 (ZT4: 49.5.0±5.6% versus ZT14: 22.7±9.5% decrease in APD, P<0.01). In contrast, aged hearts exhibited no difference between ZT14 and ZT4 in nearly every parameter assessed (except APD80: ZT4: 39.7±1.9 ms versus ZT14: 33.8±3.1 ms, P<0.01). Gene expression of KCNA5 (potassium voltage-gated channel subfamily A member 5; encoding Kv1.5) was increased, whereas gene expression of ADRB1 (encoding ß1-adrenergic receptors) was decreased at ZT14 versus ZT4 in adult hearts. No time-of-day changes in expression or phosphorylation of Ca2+ handling proteins (SERCA2 [sarco/endoplasmic reticulum Ca2+-ATPase], RyR2 [ryanodine receptor 2], and PLB [phospholamban]) was found in ex vivo perfused adult isolated hearts. CONCLUSIONS: Isolated adult hearts have strong time-of-day variation in cardiac electrophysiology, Ca2+ handling, and adrenergic responsiveness, which is disrupted with age.


Assuntos
Potenciais de Ação , Envelhecimento , Sinalização do Cálcio , Ritmo Circadiano , Frequência Cardíaca , Miocárdio/metabolismo , Potenciais de Ação/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Fatores Etários , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Estimulação Cardíaca Artificial , Regulação da Expressão Gênica , Frequência Cardíaca/efeitos dos fármacos , Preparação de Coração Isolado , Isoproterenol/farmacologia , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 1/metabolismo , Fatores de Tempo
14.
PLoS One ; 14(5): e0216484, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31086372

RESUMO

PURPOSE: To evaluate the impact of soft contact lens eye-fit on optical power by computational modelling and to produce correction maps for reversing this impact during the design process. METHODS: Finite element models of spherical and toric hydrogel contact lenses at varying nominal powers of -20 D to +20 D, base curves radii (R1b) of 8.2, 8.5, 8.8 mm, and overall diameters (d3) of 14.5, 15.0, 15.5 mm were generated. Lenses were fitted to computational eye models generated with human eyes' topography data. Combined eye-lens simulations were run under the boundary conditions of the tears' surface tension between the contact lens and the eye in addition to the eyelid blink pressure. Lens optical zone power changes were calculated through computational light-ray tracing methods following each simulation. RESULTS: Effective power changes (EPC) were affected negatively for all toric simulated lenses with power varying from -20 D to +20 D. Spherical lenses demonstrated similar behaviour, however with some positive EPC over the power range from -20 D to -10 D for spherical power (SPH) lenses. EPC assessment was between +0.25 D and -0.5 D for most lenses, however, lenses with prescriptions from +10 D to +20 D incurred EPC outside this range. The spherical lenses showed a maximum effective power change of +1.046 ± 0.338 D (Average Eye), and a minimum of -3.278 ± 0.731 D (Steep Eye). Similarly, the toric lenses showed a maximum of +1.501 ± 0.338 D (Average Eye), and a minimum of -3.514 ± 0.731 D (Steep Eye). EPC trends, along with minimum and maximum power, generally increased negatively as nominal lens prescription increased positively. Contact lens base curve selection affected the assessed effective power change for both spherical and toric lenses. The effect from lens total diameter for spherical lenses was less substantial than that for toric lenses. CONCLUSIONS: This study considered the impact of soft contact lens design parameters on effective optical power changes (EPC) after eye-fit. Spherical lenses experienced more EPC of clinical significance (>0.25 D) than toric lenses. Both types of lenses, spherical and toric (simple astigmatism), demonstrated similar trends in EPC on fitting from -20 D to +20 D, with lenses in the extremely positive and the extremely negative prescriptions demonstrating the highest EPCs. The lens base curve impacted the extent of EPC observed, with flatter base curves experiencing less power change. Diameter proved to impact toric lenses more than spherical ones, however generally the diameter has less effect on power change than base curve selection.


Assuntos
Lentes de Contato Hidrofílicas , Cristalino , Refração Ocular , Humanos
15.
Heart Rhythm ; 14(5): 727-736, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28111350

RESUMO

BACKGROUND: Interleukin 1ß (IL-1ß) is a key regulator of the inflammatory response after myocardial infarction (MI) by modulating immune cell recruitment, cytokine production, and extracellular matrix turnover. Elevated levels of IL-1ß are associated with adverse remodeling, and inhibition of IL-1 signaling after MI results in improved contractile function. OBJECTIVE: The goal of this study was to determine whether IL-1 signaling also contributes to post-MI arrhythmogenesis. METHODS: MI was created in 2 murine models of elevated inflammation: atherosclerotic on the Western diet or wild-type with a subseptic dose of lipopolysaccharide. The role of IL-1ß was assessed with the IL-1 receptor antagonist anakinra (10 mg/(kg·d), starting 24 hours post-MI). RESULTS: In vivo and ex vivo molecular imaging showed reduced myocardial inflammation after a 4-day course of anakinra treatment, despite no change in infarct size. At day 5 post-MI, high-speed optical mapping of transmembrane potential and intracellular Ca2+ in isolated hearts revealed that IL-1ß inhibition improved conduction velocity, reduced action potential duration dispersion, improved intracellular Ca2+ handling, decreased transmembrane potential and Ca2+ alternans magnitude, and reduced spontaneous and inducible ventricular arrhythmias. These functional improvements were linked to increased expression of connexin 43 and sarcoplasmic reticulum Ca2+-ATPase. CONCLUSION: This study revealed a novel mechanism for IL-1ß in contributing to defective excitation-contraction coupling and arrhythmogenesis in the post-MI heart. Our results suggest that inhibition of IL-1 signaling post-MI may represent a novel antiarrhythmic therapy.


Assuntos
Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/fisiopatologia , Acoplamento Excitação-Contração/efeitos dos fármacos , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Interleucina-1beta/antagonistas & inibidores , Infarto do Miocárdio/complicações , Animais , Antiarrítmicos/farmacologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Modelos Animais de Doenças , Acoplamento Excitação-Contração/fisiologia , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Camundongos , Infarto do Miocárdio/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA