Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 128(Pt 4): 743-51, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15689360

RESUMO

We describe five boys from different families with an atypically severe form of Pelizaeus-Merzbacher disease (PMD) who have three, and in one case, five copies of the proteolipid protein (PLP1) gene. This is the first report of more than two copies of PLP1 in PMD patients and clearly demonstrates that severe clinical symptoms are associated with increased PLP1 gene dosage. Previously, duplications, deletions and mutations of the PLP1 gene were reported to give rise to this X-linked disorder. Patients with PLP1 duplication are usually classified as having either classical or transitional PMD rather than the more rare severe connatal form. The clinical symptoms of the five patients in this study included lack of stable head control and severe mental retardation, with three having severe paroxysmal disorder and two dying before the first year of life. Gene dosage was determined using interphase FISH (fluorescence in situ hybridization) and the novel approach of multiple ligation probe amplification (MLPA). We found FISH unreliable for dosage detection above the level of a duplication and MLPA to be more accurate in determination of specific copy number. Our finding that three or more copies of the gene give rise to a more severe phenotype is in agreement with observations in transgenic mice where severity of disease increased with Plp1 gene dosage and level of overexpression. The patient with five copies of PLP1 was not more affected than those with a triplication, suggesting that there is possibly a limit to the level of severity or that other genetic factors influence the phenotype. It highlights the significance of PLP1 dosage in CNS myelinogenesis as well as the importance of accurate determination of PLP1 gene copy number in the diagnosis of PMD and carrier detection.


Assuntos
Proteínas de Membrana/genética , Proteína Proteolipídica de Mielina/genética , Doença de Pelizaeus-Merzbacher/genética , Encéfalo/patologia , Feminino , Dosagem de Genes , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Técnicas de Amplificação de Ácido Nucleico/métodos , Doença de Pelizaeus-Merzbacher/patologia
2.
Hum Genet ; 116(1-2): 83-90, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15549396

RESUMO

The 22q11 deletion syndrome (22q11DS) is a developmental syndrome comprising of heart, palate, thymus and parathyroid glands defects. Individuals with 22q11DS usually carry a 1.5- to 3-Mb heterozygous deletion on chromosome 22q11.2. However, there are many patients with features of 22q11DS without a known cause from conventional karyotype and FISH analysis. Six patients with features of 22q11DS, a normal chromosomal and FISH 22q11 analysis, were selected for investigation by microarray genomic comparative hybridisation (array CGH). Array-CGH is a powerful technology enabling detection of submicroscopic chromosome duplications and deletions by comparing a differentially labelled test sample to a control. The samples are co-hybridised to a microarray containing genomic clones and the resulting ratio of fluorescence intensities on each array element is proportional to the DNA copy number difference. No chromosomal changes were detected by hybridisation to a high resolution array representing chromosome 22q. However, one patient was found to have a 6-Mb deletion on 5q11.2 detected by a whole genome 1-Mb array. This deletion was confirmed with fluorescence in-situ hybridisation (FISH) and microsatellite marker analysis. It is the first deletion described in this region. The patient had tetralogy of Fallot, a bifid uvula and velopharyngeal insufficiency, short stature, learning and behavioural difficulties. This case shows the increased sensitivity of array CGH over detailed karyotype analysis for detection of chromosomal changes. It is anticipated that array CGH will improve the clinician's capacity to diagnose congenital syndromes with an unknown aetiology.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 22 , Cromossomos Humanos Par 5 , Criança , Deficiências do Desenvolvimento/genética , Humanos , Lactente , Masculino , Repetições de Microssatélites , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA