RESUMO
BACKGROUND: Administration of a single broadly neutralizing human immunodeficiency virus (HIV)-specific antibody to HIV-infected persons leads to the development of antibody-resistant virus in the absence of antiretroviral therapy (ART). It is possible that monotherapy with UB-421, an antibody that blocks the virus-binding site on human CD4+ T cells, could induce sustained virologic suppression without induction of resistance in HIV-infected persons after analytic treatment interruption. METHODS: We conducted a nonrandomized, open-label, phase 2 clinical study evaluating the safety, pharmacokinetics, and antiviral activity of UB-421 monotherapy in HIV-infected persons undergoing analytic treatment interruption. All the participants had undetectable plasma viremia (<20 copies of HIV RNA per milliliter) at the screening visit. After discontinuation of ART, participants received eight intravenous infusions of UB-421, at a dose of either 10 mg per kilogram of body weight every week (Cohort 1) or 25 mg per kilogram every 2 weeks (Cohort 2). The primary outcome was the time to viral rebound (≥400 copies per milliliter). RESULTS: A total of 29 participants were enrolled, 14 in Cohort 1 and 15 in Cohort 2. Administration of UB-421 maintained virologic suppression (<20 copies per milliliter) in all the participants (94.5% of measurements at study visits 2 through 9) during analytic treatment interruption, with intermittent viral blips (range, 21 to 142 copies per milliliter) observed in 8 participants (28%). No study participants had plasma viral rebound to more than 400 copies per milliliter. CD4+ T-cell counts remained stable throughout the duration of the study. Rash, mostly of grade 1, was a common and transient adverse event; one participant discontinued the study drug owing to a rash. A decrease in the population of CD4+ regulatory T cells was observed during UB-421 monotherapy. CONCLUSIONS: UB-421 maintained virologic suppression (during the 8 to 16 weeks of study) in participants in the absence of ART. One participant discontinued therapy owing to a rash. (Funded by United Biomedical and others; ClinicalTrials.gov number, NCT02369146.).
Assuntos
Antirretrovirais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1 , Adulto , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/farmacologia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos , Exantema/induzido quimicamente , HIV-1/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T Reguladores , Carga Viral , Viremia/tratamento farmacológicoRESUMO
Previous studies have shown that growth hormone (GH) recruits the adapter protein SH2B1ß to the GH-activated, GH receptor-associated tyrosine kinase JAK2, implicating SH2B1ß in GH-dependent actin cytoskeleton remodeling, and suggesting that phosphorylation at serines 161 and 165 in SH2B1ß releases SH2B1ß from the plasma membrane. Here, we examined the role of SH2B1ß in GH regulation of macrophage migration. We show that GH stimulates migration of cultured RAW264.7 macrophages, and primary cultures of peritoneal and bone marrow-derived macrophages. SH2B1ß overexpression enhances, whereas SH2B1 knockdown inhibits, GH-dependent motility of RAW macrophages. At least two independent mechanisms regulate the SH2B1ß-mediated changes in motility. In response to GH, tyrosines 439 and 494 in SH2B1ß are phosphorylated. Mutating these tyrosines in SH2B1ß decreases both basal and GH-stimulated macrophage migration. In addition, mutating the polybasic nuclear localization sequence (NLS) in SH2B1ß or creating the phosphomimetics SH2B1ß(S161E) or SH2B1ß(S165E), all of which release SH2B1ß from the plasma membrane, enhances macrophage motility. Conversely, SH2B1ß(S161/165A) exhibits increased localization at the plasma membrane and decreased macrophage migration. Mutating the NLS or the nearby serine residues does not alter GH-dependent phosphorylation on tyrosines 439 and 494 in SH2B1ß. Mutating tyrosines 439 and 494 does not affect localization of SH2B1ß at the plasma membrane or movement of SH2B1ß into focal adhesions. Taken together, these results suggest that SH2B1ß enhances GH-stimulated macrophage motility via mechanisms involving phosphorylation of SH2B1ß on tyrosines 439 and 494 and movement of SH2B1ß out of the plasma membrane (e.g. as a result of phosphorylation of serines 161 and 165).
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/metabolismo , Hormônio do Crescimento/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Animais , Linhagem Celular , Movimento Celular/fisiologia , Adesões Focais/metabolismo , Camundongos , FosforilaçãoRESUMO
The adaptor protein SH2B1ß participates in regulation of the actin cytoskeleton during processes such as cell migration and differentiation. Here, we identify SH2B1ß as a new focal adhesion protein. We provide evidence that SH2B1ß is phosphorylated in response to phorbol 12-myristate 13-acetate (PMA)-induced protein kinase C (PKC) activation and show that PMA induces a rapid redistribution of SH2B1ß out of focal adhesions. We also show that growth hormone (GH) increases cycling of SH2B1ß into and out of focal adhesions. Ser161 and Ser165 in SH2B1ß fall within consensus PKC substrate motifs. Mutating these two serine residues into alanine residues abrogates PMA-induced redistribution of SH2B1ß out of focal adhesions, decreases SH2B1ß cycling into and out of focal adhesions in control and GH-stimulated cells, and increases the size of focal adhesions. By contrast, mutating Ser165 into a glutamate residue decreases the amount of SH2B1ß in focal adhesions and increases the number of focal adhesions per cell. These results suggest that activation of PKC regulates SH2B1ß focal adhesion localization through phosphorylation of Ser161 and/or Ser165. The finding that phosphorylation of SH2B1ß increases the number of focal adhesions suggests a mechanism for the stimulatory effect on cell motility of SH2B1ß.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Moléculas de Adesão Celular/metabolismo , Adesões Focais/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Moléculas de Adesão Celular/genética , Linhagem Celular , Movimento Celular , Citoesqueleto/metabolismo , Adesões Focais/efeitos dos fármacos , Adesões Focais/patologia , Hormônio do Crescimento/farmacologia , Camundongos , Mutagênese Sítio-Dirigida , Mutação/genética , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Serina/genética , Transdução de Sinais/efeitos dos fármacos , Ciclização de Substratos/efeitos dos fármacos , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/metabolismoRESUMO
An intriguing question in cell biology is what targets proteins to, and regulates their translocation between, specific cellular locations. Here we report that the polybasic nuclear localization sequence (NLS) required for nuclear entry of the adapter protein and candidate human obesity gene product SH2B1ß, also localizes SH2B1ß to the plasma membrane (PM), most probably via electrostatic interactions. Binding of SH2B1ß to the PM also requires its dimerization domain. Phosphorylation of serine residues near this polybasic region, potentially by protein kinase C, releases SH2B1ß from the PM and enhances nuclear entry. Release of SH2B1ß from the PM and/or nuclear entry appear to be required for SH2B1ß enhancement of nerve growth factor (NGF)-induced expression of urokinase plasminogen activator receptor gene and neurite outgrowth of PC12 cells. Taken together, our results provide strong evidence that the polybasic NLS region of SH2B1 serves the dual function of localizing SH2B1 to both the nucleus and the PM, the latter most probably through electrostatic interactions that are enhanced by SH2B1ß dimerization. Cycling between the different cellular compartments is a consequence of the phosphorylation and dephosphorylation of serine residues near the NLS and is important for physiological effects of SH2B1, including NGF-induced gene expression and neurite outgrowth.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Eletroforese em Gel de Poliacrilamida , Humanos , Immunoblotting , Imunoprecipitação , Espectrometria de Massas , Camundongos , Células PC12 , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Over the last 2 decades, omalizumab is the only anti-IgE antibody that has been approved for asthma and chronic spontaneous urticaria (CSU). Ligelizumab, a higher-affinity anti-IgE mAb and the only rival viable candidate in late-stage clinical trials, showed anti-CSU efficacy superior to that of omalizumab in phase IIb but not in phase III. This report features the antigenic-functional characteristics of UB-221, an anti-IgE mAb of a newer class that is distinct from omalizumab and ligelizumab. UB-221, in free form, bound abundantly to CD23-occupied IgE and, in oligomeric mAb-IgE complex forms, freely engaged CD23, while ligelizumab reacted limitedly and omalizumab stayed inert toward CD23; these observations are consistent with UB-221 outperforming ligelizumab and omalizumab in CD23-mediated downregulation of IgE production. UB-221 bound IgE with a strong affinity to prevent FcÔRI-mediated basophil activation and degranulation, exhibiting superior IgE-neutralizing activity to that of omalizumab. UB-221 and ligelizumab bound cellular IgE and effectively neutralized IgE in sera of patients with atopic dermatitis with equal strength, while omalizumab lagged behind. A single UB-221 dose administered to cynomolgus macaques and human IgE (ε, κ)-knockin mice could induce rapid, pronounced serum-IgE reduction. A single UB-221 dose administered to patients with CSU in a first-in-human trial exhibited durable disease symptom relief in parallel with a rapid reduction in serum free-IgE level.
Assuntos
Omalizumab , Urticária , Animais , Anticorpos Monoclonais Humanizados , Regulação para Baixo , Humanos , Imunoglobulina E , Camundongos , Omalizumab/farmacologia , Omalizumab/uso terapêutico , Urticária/tratamento farmacológico , Urticária/genéticaRESUMO
Regulation of cell migration is an important step for the development of branching tubule morphogenesis in collagen gel. Here, we showed that discoidin domain receptor (DDR) 1a/b inhibited collagen-induced tyrosine phosphorylation of signal transducers and activators of transcription (Stat) 1/3 and cell migration triggered by alpha2beta1-integrin. Overexpression of DDR1a/b increased the interaction of DDR1 with SHP-2 and up-regulated the tyrosine phosphatase activity of SHP-2. Expression of catalytically inactive SHP-2 in DDR1-transfected cells restored the tyrosine phosphorylation of Stat3 and cell migration. We demonstrated that the Src homology-2 (SH2)-SH2 and phosphotyrosyl phosphatase (PTP) domains of SHP-2 were responsible for interaction with DDR1 and that both tyrosine phosphorylation sites 703 and 796 of DDR1 were essential for it to bind with SHP-2. Mutation of tyrosine 703 or 796 of DDR1 abolished the ability of DDR1 to inhibit the tyrosine phosphorylation of Stat1 and Stat3 and restored collagen-induced cell migration and hepatocyte growth factor-induced branching tubulogenesis in collagen gel. Together, these results demonstrate that SHP-2 is required for the DDR1-induced suppression of Stat1 and Stat3 tyrosine phosphorylation, cell migration, and branching tubulogenesis.
Assuntos
Movimento Celular/fisiologia , Integrina alfa2beta1/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Mitogênicos/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Células 3T3 , Animais , Linhagem Celular , Colágeno/farmacologia , Receptores com Domínio Discoidina , Cães , Integrina alfa2beta1/antagonistas & inibidores , Rim , Camundongos , Modelos Biológicos , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Transdução de SinaisRESUMO
We have previously reported rare variants in sarcoma (Src) homology 2 (SH2) B adaptor protein 1 (SH2B1) in individuals with obesity, insulin resistance, and maladaptive behavior. Here, we identify 4 additional SH2B1 variants by sequencing 500 individuals with severe early-onset obesity. SH2B1 has 4 alternatively spliced isoforms. One variant (T546A) lies within the N-terminal region common to all isoforms. As shown for past variants in this region, T546A impairs SH2B1ß enhancement of nerve growth factor-induced neurite outgrowth, and the individual with the T546A variant exhibits mild developmental delay. The other 3 variants (A663V, V695M, and A723V) lie in the C-terminal tail of SH2B1α. SH2B1α variant carriers were hyperinsulinemic but did not exhibit the behavioral phenotype observed in individuals with SH2B1 variants that disrupt all isoforms. In in vitro assays, SH2B1α, like SH2B1ß, enhances insulin- and leptin-induced insulin receptor substrate 2 (IRS2) phosphorylation and GH-induced cell motility. None of the variants affect SH2B1α enhancement of insulin- and leptin-induced IRS2 phosphorylation. However, T546A, A663V, and A723V all impair the ability of SH2B1α to enhance GH-induced cell motility. In contrast to SH2B1ß, SH2B1α does not enhance nerve growth factor-induced neurite outgrowth. These studies suggest that genetic variants that disrupt isoforms other than SH2B1ß may be functionally significant. Further studies are needed to understand the mechanism by which the individual isoforms regulate energy homeostasis and behavior.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Obesidade/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adolescente , Adulto , Processamento Alternativo , Criança , Feminino , Humanos , Insulina/metabolismo , Leptina/metabolismo , Masculino , Mutação de Sentido Incorreto , Obesidade/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Adulto JovemRESUMO
Src homology 2 B adapter protein 1 (SH2B1) modulates signaling by a variety of ligands that bind to receptor tyrosine kinases or JAK-associated cytokine receptors, including leptin, insulin, growth hormone (GH), and nerve growth factor (NGF). Targeted deletion of Sh2b1 in mice results in increased food intake, obesity, and insulin resistance, with an intermediate phenotype seen in heterozygous null mice on a high-fat diet. We identified SH2B1 loss-of-function mutations in a large cohort of patients with severe early-onset obesity. Mutation carriers exhibited hyperphagia, childhood-onset obesity, disproportionate insulin resistance, and reduced final height as adults. Unexpectedly, mutation carriers exhibited a spectrum of behavioral abnormalities that were not reported in controls, including social isolation and aggression. We conclude that SH2B1 plays a critical role in the control of human food intake and body weight and is implicated in maladaptive human behavior.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Mutação da Fase de Leitura , Mutação de Sentido Incorreto , Obesidade/genética , Adolescente , Adulto , Agressão , Sequência de Bases , Estudos de Casos e Controles , Movimento Celular , Criança , Pré-Escolar , Análise Mutacional de DNA , Ingestão de Energia/genética , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Transporte Proteico , Isolamento Social , Adulto JovemRESUMO
Activation of signal transducer and activator of transcription-3 (Stat3) during cell confluency is related to its regulatory roles in cell growth arrest- or survival-related physiological or developmental processes. We previously demonstrated that this signaling event triggers epithelial dome formation by transcriptional augmentation of sodium hydrogen exchanger-3 (NHE3) expression. However, the detailed molecular mechanism remained unclear. By using serial deletions, site-directed mutagenesis, and EMSA analysis, we now demonstrate Stat3 binding to an atypical Stat3-response element in the rat proximal NHE3 promoter, located adjacent to a cluster of Sp cis-elements (SpA/B/C), within -77/-36 nt of the gene. SpB (-58/-55 nt) site was more effective than SpA (-72/-69 nt) site for cooperative binding of Sp1/Sp3. Increasing cell density had no effect on Sp1/Sp3 expression but resulted in their increased binding to the SpA/B/C probe along with Stat3 and concurrently with enhanced nuclear pTyr705-Stat3 level. Immunoprecipitation performed with the nuclear extracts demonstrated physical interaction of Stat3 and Sp1/Sp3 triggered by cell confluency. Stat3 inhibition by overexpression of dominant-negative Stat3-D mutant in MDCK cells or by small interfering RNA-mediated knockdown in Caco-2 cells resulted in inhibition of the cell density-induced NHE3 expression, Sp1/Sp3 binding, and NHE3 promoter activity and in decreased dome formation. Thus, during confluency, ligand-independent Stat3 activation leads to its interaction with Sp1/Sp3, their recruitment to the SpA/B/C cluster in a Stat3 DNA-binding domain-dependent fashion, increased transcription, and expression of NHE3, to coordinate cell density-mediated epithelial dome formation.
Assuntos
Proliferação de Células , Células Epiteliais/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Ativação Transcricional , Animais , Células CACO-2 , DNA/metabolismo , Cães , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Mutagênese Sítio-Dirigida , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Fator de Transcrição STAT3/genética , Transdução de Sinais , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/genética , TransfecçãoRESUMO
Under normal culture conditions, cells adhere to culture dish, spread out, proliferate, and finally cover all areas and reach confluence. During the confluent stage, cell proliferation ceases and differentiation is enhanced. Meanwhile, cell death also appears as the monolayer confluence proceeds. To delineate the mechanism of cell death induced by the confluent process, we employed Madin-Darby canine kidney (MDCK) cells. When approaching confluence, MDCK cells exhibited increase the levels of caspase-2 and enhanced the activity of caspase-8. Using various caspase inhibitors to block apoptosis, we found that only z-VAD-fmk and z-IETD-fmk can inhibit confluent cell death, indicating that confluent cell death is mediated by activation of caspase-8. Overexpression of Bcl-2 inhibited confluent cell death, suggesting the involvement of mitochondria-dependent pathway in confluent cell death. Interestingly, the activity of phospho-Erk (p-Erk) was initially decreased before confluence, but markedly increased after confluence. Immunofluorescence staining studies showed that p-Erk was expressed exclusively on dome-forming cells that underwent apoptosis. Treatment of confluent MDCK cells with PD98059 and UO126, the inhibitors of MEK, enhanced apoptosis as well as activity of caspase-8. These data indicate that elevation of p-Erk activity during confluence may serve to suppress confluent cell death. Taken together, activation of caspase-8 contributes to and results in confluent cell death, whereas elevated p-Erk activity serves to prevent confluent cell death by regulating activation of caspase-8.
Assuntos
Caspase 8/metabolismo , Células Epiteliais/citologia , Células Epiteliais/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Inibidores de Caspase , Morte Celular/efeitos dos fármacos , Cães , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Fosfoproteínas/antagonistas & inibidores , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/genéticaRESUMO
Cell confluence induces the activation of signal transducer and activator of transcription-3 (Stat3) in various cancer and epithelial cells, yet the biological implications and the associated regulatory mechanisms remain unclear. Because confluent polarized epithelia demonstrate dome formation and sodium influx that mimic the onset of differentiation, we sought to elucidate the role of Stat3 in association with the regulation of selective epithelial transporters in this biological phenomenon. This study established the correlation between Stat3 activation and cell confluence-induced dome formation in Madin-Darby canine kidney cells (MDCK) by following Stat3 activation events in dome-forming cells. Epifluorescent and confocal microscopy provided evidence showing specific localization of phosphorylated Stat3 Tyr(705) in the nuclei of dome-forming cells at initial stages. The relationship was further elucidated by the establishment of tetracycline-inducible expression of constitutive Stat3 mutant (Stat3-C) in MDCK cells or expression of dominant negative Stat3 (Stat3-D) stable cell lines (MDCK and NMuMG). Dome formation was promoted by the expression of Stat3-C but inhibited by Stat3-D. Two trans-epithelial transporters, NHE3 and ENaC alpha-subunit, were found to be increased during cell confluence. Interestingly, NHE3 expression could be specifically up-regulated by Stat3-C but inhibited by Stat3-D through promoter regulation, whereas NHE1 and ENaC alpha-subunit were not affected by Stat3 expression. Application of NHE3 shRNA, NHE3 inhibitors (EIPA and S3226) suppressed confluence-induced dome formation in MDCK or NMuMG cells. These results demonstrate a cell confluence-induced Stat3 signaling pathway in epithelial cells in triggering dome formation through NHE3 augmentation.
Assuntos
Proliferação de Células , Células Epiteliais/citologia , Fator de Transcrição STAT3/metabolismo , Trocadores de Sódio-Hidrogênio/biossíntese , Trocadores de Sódio-Hidrogênio/genética , Regulação para Cima/fisiologia , Animais , Adesão Celular/fisiologia , Técnicas de Cultura de Células , Linhagem Celular , Cães , Células Epiteliais/metabolismo , Humanos , Camundongos , Fator de Transcrição STAT3/fisiologia , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/fisiologiaRESUMO
Focal adhesion kinase (FAK) is a critical protein for the regulation of integrin-mediated cellular functions and it can enhance cell motility in Madin-Darby canine kidney (MDCK) cells by hepatocyte growth factor (HGF) induction. We utilized optical trapping and cytodetachment techniques to measure the adhesion force between pico-Newton and nano-Newton (nN) for quantitatively investigating the effects of FAK on adhesion force during initial binding (5 s), beginning of spreading (30 min), spreadout (12 h), and migration (induced by HGF) in MDCK cells with overexpressed FAK (FAK-WT), FAK-related non-kinase (FRNK), as well as normal control cells. Optical tweezers was used to measure the initial binding force between a trapped cell and glass coverslide or between a trapped bead and a seeded cell. In cytodetachment, the commercial atomic force microscope probe with an appropriate spring constant was used as a cyto-detacher to evaluate the change of adhesion force between different FAK expression levels of cells in spreading, spreadout, and migrating status. The results demonstrated that FAK-WT significantly increased the adhesion forces as compared to FRNK cells throughout all the different stages of cell adhesion. For cells in HGF-induced migration, the adhesion force decreased to almost the same level (approximately 600 nN) regardless of FAK levels indicating that FAK facilitates cells to undergo migration by reducing the adhesion force. Our results suggest FAK plays a role of enhancing cell adhesive ability in the binding and spreading, but an appropriate level of adhesion force is required for HGF-induced cell migration.