Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 22(46): 27206-27213, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33226035

RESUMO

The tritium release behavior of the Li2TiO3 crystal has become an important index to evaluate its comprehensive performance as a solid breeder material in nuclear fusion reactors. The tritium diffusion on the surface (surface diffusion) and diffusion from the inside to the surface (hopping diffusion) in Li2TiO3 crystals with a 1/3-Li(001) surface are systematically investigated by the first-principles method. Possible adsorption sites, diffusion pathways and energy barriers of surface diffusion and hopping diffusion have been calculated and analyzed, respectively. Tritium atoms are found to diffuse preferentially along the [100] direction on the surface and two equivalent pathways across the surface were identified. The obtained activation energies are about 0.50 eV for surface diffusion and 1.56 eV for hopping diffusion. The local density of states and Bader charge for typical surface diffusion and hopping diffusion pathways are calculated and analyzed. The results reveal that the tritium (T) atom bonds with neighboring oxygen (O) atoms during the surface diffusion, while the T-O interaction is significantly weakened in the hopping diffusion which results in the higher activation energy than that of surface diffusion. In combination with our previous work, a complete tritium diffusion model for the Li2TiO3 crystal is proposed and the corresponding tritium diffusion coefficients are obtained. Our obtained activation energies are in the same range as previous experimental data and could provide theoretical support for the future related experiments.

2.
ACS Omega ; 7(31): 27149-27156, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35967035

RESUMO

The hydrogen atom capacity in the vacancies of the Li2TiO3 crystal is systematically studied by the first-principles method to evaluate its tritium release performance as a solid breeder material in nuclear fusion reactors. The adsorption process of adding hydrogen atoms one by one in the vacancy are investigated to find the possible adsorption sites of the hydrogen atoms in the vacancy. The charge transfer and density of states analysis are performed to reveal the form of a hydrogen-hydrogen dimer in the vacancy. Also, the trapping energy and formation energy are defined and calculated to determine the hydrogen atom capacity of the system. According to the simulations, the Ti vacancies have the strongest hydrogen atom capacity followed by Li vacancies, and O vacancies are the weakest. The influence of hydrostatic pressure on the hydrogen atom capacity is also investigated. Our results reveal the hydrogen capacity of vacancies in the Li2TiO3 crystal from the atomic scale, which also provide a theoretical guide to the related tritium release experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA