Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(12): e202316925, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38284505

RESUMO

During multivalent ions insertion processes, intense electrostatic interaction between charge carriers and host makes the high-performance reversible Al3+ storage remains an elusive target. On account of the strong electrostatic repulsion and poor robustness, Prussian Blue analogues (PBAs) suffer severely from the inevitable and large strain and phase change during reversible Al3+ insertion. Herein, we demonstrate an entropy-driven strategy to realize ultralong life aqueous Al-ion batteries (AIBs) based on medium entropy PBAs (ME-PBAs) host. By multiple redox active centers introduction, the intrinsic poor conductivity can be enhanced simultaneously, resulting in outstanding capabilities of electrochemical Al3+ storage. Meanwhile, the co-occupation at metal sites in PBA frameworks can also increase the M-N bond intensity, which is beneficial for constraining the phase change during consecutive Al3+ reversible insertion, to realize an extended lifespan over 10,000 cycles. Based on the calculation at different operation states, the fluctuation of ME-PBA lattice parameters is only 1.2 %. Assembled with MoO3 anodes, the full cells can also deliver outstanding electrochemical properties. The findings highlight that, the entropy regulation strategy could uncover the isochronous constraint on both strain and phase transition for long-term reversible Al3+ storage, providing a promising design for advanced electrode materials for aqueous multivalent ions batteries.

2.
Chem Rec ; 22(10): e202200081, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35585030

RESUMO

In recent years, with the vigorous development and gradual deployment of new energy vehicles, more attention has been paid to the research on lithium-ion batteries (LIBs). Compared with the booming LIBs, lithium primary batteries (LPBs) own superiority in specific energy and self-discharge rate and are usually applied in special fields such as medical implantation, aerospace, and military. Widespread application in special fields also means more stringent requirements for LPBs in terms of energy density, working temperature range and shelf life. Therefore, how to obtain LPBs with high energy density, wide operational temperature range and long storage life is of great importance in future development. In view of the above, this paper reviews the latest research on LPBs in cathode, anode and electrolyte over the years, and puts forward relevant insights for LPBs, along with the intention to explore avenues for the design of LPBs components in the coming decades and promote further development in this field.

3.
J Med Genet ; 56(3): 186-194, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30567904

RESUMO

BACKGROUND: To better understand the pathogenesis of cervical cancer (CC), we systematically analysed the genomic variation and human papillomavirus (HPV) integration profiles of cervical intraepithelial neoplasia (CIN) and CC. METHODS: We performed whole-genome sequencing or whole-exome sequencing of 102 tumour-normal pairs and human papillomavirus probe capture sequencing of 45 CCs, 44 CIN samples and 25 normal cervical samples, and constructed strict integrated workflow of genomic analysis. RESULTS: Mutational analysis identified eight significantly mutated genes in CC including four genes (FAT1, MLL3, MLL2 and FADD), which have not previously been reported in CC. Targetable alterations were identified in 55.9% of patients. In addition, HPV integration breakpoints occurred in 97.8% of the CC samples, 70.5% of the CIN samples and 42.8% of the normal cervical samples with HPV infection. Integrations of high-risk HPV strains in CCs, including HPV16, 18, 33 and 58, also occurred in the CIN samples. Moreover, gene mutations were detected in 52% of the CIN specimens, and 54.8% of these mutations occurred in genes that also mutated in CCs. CONCLUSION: Our results lay the foundation for a deep understanding of the molecular mechanisms and finding new diagnostic and therapeutic targets of CC.


Assuntos
Perfilação da Expressão Gênica , Variação Genética , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/genética , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Biomarcadores Tumorais , Variações do Número de Cópias de DNA , Feminino , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Estadiamento de Neoplasias , Neoplasias do Colo do Útero/virologia , Sequenciamento Completo do Genoma , Displasia do Colo do Útero/virologia
4.
Cancer Cell Int ; 18: 53, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636641

RESUMO

BACKGROUND: Signal transducer and activator of transcription 3 (STAT3) is persistently activated in a wide variety of epithelial cancers. Aberrant activity of STAT3 correlates with tumor growth, invasion and metastasis, which makes it a potential therapeutic target of cancer. To explore the biological role of STAT3 in esophageal cancer, we used small hairpin RNA to knockdown the expression of the STAT3 gene in the esophageal carcinoma ECA109 cell line and the cell apoptosis, cell cycle and cell migration were investigated. METHODS: The cell apoptosis was tested using DNA ladder, mitochondrial membrane potential assay, TUNEL assay, annexin V-PI staining. Cell cycle phases were estimated using flow cytometry analysis. The mRNA and proteins related to apoptosis and cell cycle were examined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. And cell migration was investigated by in vitro Transwell assay. The data were analyzed with two-sample Student's t test and ANOVA followed by the LSD post hoc test. RESULTS: Our results showed that knockdown of STAT3 in ECA109 cells induced noticeable apoptotic morphological changes like cell shrinkage, apoptotic vacuoles, membrane blebbing time-dependently. In addition, DNA ladder, TUNEL assay, Annexin V-PI staining and declined level of cleaved Caspase-3 indicated that down-regulation of STAT3 could induce apoptosis in ECA109 cells. Flow cytometry analysis displayed the induction of G1-phase cell cycle arrest of ECA109 cells by STAT3 decreasing, consistent with the descend of c-Myc and cyclin D1 in protein levels. Furthermore, STAT3 knockdown suppressed the expression of matrix metalloproteinases-9, sushi domain containing 2 and urokinase plasminogen activator in ECA109 cells and inhibited cell migration ability. CONCLUSIONS: Knockdown of STAT3 could induce the apoptosis and G1 cell cycle arrest in esophageal carcinoma ECA109 cells, and inhibit the migration ability of cells as well.

5.
Front Pharmacol ; 15: 1377079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915473

RESUMO

The increasing prevalence of depression is a major societal burden. The etiology of depression involves multiple mechanisms. Thus, the outcomes of the currently used treatment for depression are suboptimal. The anti-depression effects of traditional Chinese medicine (TCM) formulations have piqued the interest of the scientific community owing to their multi-ingredient, multi-target, and multi-link characteristics. According to the TCM theory, the functioning of the kidney is intricately linked to that of the brain. Clinical observations have indicated the therapeutic potential of the kidney-tonifying formula Erxian Decoction (EXD) in depression. This review aimed to comprehensively search various databases to summarize the anti-depression effects of EXD, explore the underlying material basis and mechanisms, and offer new suggestions and methods for the clinical treatment of depression. The clinical and preclinical studies published before 31 August 2023, were searched in PubMed, Google Scholar, China National Knowledge Infrastructure, and Wanfang Database. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Clinical studies have demonstrated that EXD exhibits therapeutic properties in patients with menopausal depression, postpartum depression, and maintenance hemodialysis-associated depression. Meanwhile, preclinical studies have reported that EXD and its special chemical markers exert anti-depression effects by modulating monoamine neurotransmitter levels, inhibiting neuroinflammation, augmenting synaptic plasticity, exerting neuroprotective effects, regulating the hypothalamic-pituitary-adrenal axis, promoting neurogenesis, and altering cerebrospinal fluid composition. Thus, the anti-depression effects of EXD are mediated through multiple ingredients, targets, and links. However, further clinical and animal studies are needed to investigate the anti-depression effects of EXD and the underlying mechanisms and offer additional evidence and recommendations for its clinical application. Moreover, strategies must be developed to improve the quality control of EXD. This review provides an overview of EXD and guidance for future research direction.

6.
J Colloid Interface Sci ; 664: 381-388, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479274

RESUMO

Na3MnTi(PO4)3 (NMTP) emerges as a promising cathode material with high-performance for sodium-ion batteries (SIBs). Nevertheless, its development has been limited by several challenges, including poor electronic conductivity, the Mn3+ Jahn-Teller effect, and the presence of a Na+/Mn2+ cation mixture. To address these issues, we have developed a cation/anion-dual regulation strategy to activate the redox reactions involving manganese, thereby significantly enhancing the performance of NMTP. This strategy simultaneously enhances the structural dynamics and facilitates rapid ion transport at high rates by inducing the formation of sodium vacancy. The combined effects of these modifications lead to a substantial improvement in specific capacity (79.1 mAh/g), outstanding high-rate capabilities (35.9 mAh/g at 10C), and an ultralong cycle life (only 0.040 % capacity attenuation per cycle over 250 cycles at 1C for Na3.34Mn1.2Ti0.8(PO3.98F0.02)3) when used as a cathode material in SIBs. Furthermore, its performance in full cell demonstrates impressive rate capability (44.4 mAh/g at 5C) and exceptional cycling stability (with only 0.116 % capacity decay per cycle after 150 cycles at 1C), suggesting its potential for practical applications. This work presents a dual regulation strategy targeting different sites, offering a significant advancement in the development of NASICON phosphate cathodes for SIBs.

7.
J Colloid Interface Sci ; 664: 607-616, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490036

RESUMO

Expanded graphite (EG) stands out as a promising material for the negative electrode in potassium-ion batteries. However, its full potential is hindered by the limited diffusion pathway and storage sites for potassium ions, restricting the improvement of its electrochemical performance. To overcome this challenge, defect engineering emerges as a highly effective strategy to enhance the adsorption and reaction kinetics of potassium ions on electrode materials. This study delves into the specific effectiveness of defects in facilitating potassium storage, exploring the impact of defect-rich structures on dynamic processes. Employing ball milling, we introduce surface defects in EG, uncovering unique effects on its electrochemical behavior. These defects exhibit a remarkable ability to adsorb a significant quantity of potassium ions, facilitating the subsequent intercalation of potassium ions into the graphite structure. Consequently, this process leads to a higher potassium voltage. Furthermore, the generation of a diluted stage compound is more pronounced under high voltage conditions, promoting the progression of multiple stage reactions. Consequently, the EG sample post-ball milling demonstrates a notable capacity of 286.2 mAh g-1 at a current density of 25 mA g-1, showcasing an outstanding rate capability that surpasses that of pristine EG. This research not only highlights the efficacy of defect engineering in carbon materials but also provides unique insights into the specific manifestations of defects on dynamic processes, contributing to the advancement of potassium-ion battery technology.

8.
J Colloid Interface Sci ; 650(Pt A): 742-751, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37441967

RESUMO

Layered transition metal oxides have the greatest potential for commercial application as cathode materials for sodium-ion batteries. However, transition metal oxides inevitably undergo an irreversible oxygen loss process during cycling, which leads to structural changes in the material and ultimately to severe capacity degradation. In this work, using density function theory (DFT) calculations, the Ni-O bond is revealed to be the weakest of the M-O bonds, which may lead to structural failure. Herein, the synergistic surface CeO2 modification and the trace doping of Ce elements stimulate oxygen redox and improve its reversibility, thus improving the structural stability and electrochemical performance of the material. Theoretical calculations prove that Na0.67Mn0.7Ni0.2Co0.1O2 (MNC) obtains electrons from CeO2, avoiding destruction of the Ni-O bond by over-energy released during the charging process and inhibiting oxygen loss. The capacity retention was 77.37% for 200 cycles at 500 mA g-1, compared to 33.84% for the unmodified Na0.67Mn0.7Ni0.2Co0.1O2. Overall, the present work demonstrates that the synergistic effect of surface coating and doping is an effective strategy for realizing tuning oxygen release and high electrochemical performance.

9.
Front Microbiol ; 13: 1084500, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699591

RESUMO

In recent years, with the harm caused by the abuse of antibiotics and the increasing demand for green and healthy food, people gradually began to look for antibiotic alternatives for aquaculture. As a Chinese herbal medicine, leaf extract chlorogenic acid (CGA) of Eucommia ulmoides Oliver can improve animal immunity and antioxidant capacity and can improve animal production performance. In this study, crucian carp (Carassius auratus) was fed with complete feed containing 200 mg/kg CGA for 60 days to evaluate the antioxidant, immuno-enhancement, and regulation of intestinal microbial activities of CGA. In comparison to the control, the growth performance indexes of CGA-added fish were significantly increased, including final body weight, weight gain rate, and specific growth rate (P < 0.01), while the feed conversion rate was significantly decreased (P < 0.01). Intestinal digestive enzyme activity significantly increased (P < 0.01); the contents of triglyceride in the liver (P < 0.01) and muscle (P > 0.05) decreased; and the expression of lipid metabolism-related genes in the liver was promoted. Additionally, the non-specific immune enzyme activities of intestinal and liver tissues were increased, but the expression level of the adenylate-activated protein kinase gene involved in energy metabolism was not affected. The antioxidant capacity of intestinal, muscle, and liver tissues was improved. Otherwise, CGA enhanced the relative abundance of intestinal microbes, Fusobacteria and Firmicutes and degraded the relative abundance of Proteobacteria. In general, our data showed that supplementation with CGA in dietary had a positive effect on Carassius auratus growth, immunity, and balance of the bacteria in the intestine. Our findings suggest that it is of great significance to develop and use CGA as a natural non-toxic compound in green and eco-friendly feed additives.

10.
Dalton Trans ; 47(30): 10046-10056, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-29978168

RESUMO

In this study, a novel few-layer WS2/Bi2MoO6 heterojunction with greatly enhanced visible light photocatalytic performance was synthesized via a facile hydrothermal method. The results indicated that Bi2MoO6 nanosheets were directly grown on the surface of few-layer WS2 and form plate-on-plate heterojunctions. The synthesized nanocomposites exhibited excellent photocatalytic activity under visible-light irradiation. The optimal composite with 5 wt% WS2 showed the highest photocatalytic activity, whose degradation efficiencies and TOC removal were 99.5% and 91.7% for rhodamine B (RhB), 98.9% and 89.8% for ciprofloxacin (CIP), 76.0% and 67.8% for methylene blue (MB), and 69.3% and 58.6% for methimazole (MMI), respectively. Their excellent photocatalytic performance was predominantly ascribed to the construction of a plate-on-plate heterojunction structure between WS2 and Bi2MoO6, which could promote charge separation efficiency and enhance light harvesting efficiency. The present work provides a new understanding for extending the application of transition-metal dichalcogenides in the field of photocatalysis.

11.
Bioresour Technol ; 155: 213-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24457306

RESUMO

The mechanism of transport of (14)C-fluoranthene by Rhodococcus sp. BAP-1, a Gram-positive bacterium isolated from crude oil-polluted soil, was examined. Our finding demonstrated that the mechanism for fluoranthene travel across the cell membrane in Rhodococcus sp. BAP-1 requires energy. Meanwhile, the transport of fluoranthene involves concurrent catabolism of (14)C, that leading to the generation of significant amount of (14)CO2. Combined with trans-membrane transport dynamic and response surface methodology, a significant influence of temperature, pH and salinity on cellular uptake rate was screened by Plackett-Burman design. Then, Box-Behnken design was employed to optimize and enhanced the trans-membrane transport process. The results predicted by Box-Behnken design indicated that the maximum cellular uptake rate of fluoranthene could be achieve to 0.308µmolmin(-1)mg(-1)·protein (observed) and 0.304µmolmin(-1)mg(-1)·protein (predicted) when the initial temperature, pH and salinity were set at 20°C, 9% and 1%, respectively.


Assuntos
Fluorenos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Rhodococcus/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Transporte Biológico/fisiologia , Radioisótopos de Carbono/metabolismo , China , Primers do DNA/genética , Concentração de Íons de Hidrogênio , Cinética , RNA Ribossômico 16S/genética , Rhodococcus/genética , Salinidade , Análise de Sequência de DNA , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA