RESUMO
An efficient and operationally simple Ni-catalyzed amination protocol has been developed. This methodology features a simple NiII salt, an organic base and catalytic amounts of both a pyridinium additive and Zn metal. A diverse number of (hetero)aryl halides were coupled successfully with primary and secondary alkyl amines, and anilines in good to excellent yields. Similarly, benzophenone imine gave the corresponding N-arylation product in an excellent yield.
RESUMO
A nickel-catalyzed reductive cross-coupling has been achieved using (hetero)aryl bromides and vinyl acetate as the coupling partners. This mild, applicable method provides a reliable access to a variety of vinyl arenes, heteroarenes, and benzoheterocycles, which should expand the chemical space of precursors to fine chemicals and polymers. Importantly, a sustainable solvent, dimethyl isosorbide, is used, making this protocol more attractive from the point of view of green chemistry.
RESUMO
A mild and practical C(sp3)-H lactonization protocol has been achieved by merging photocatalysis and magnesium (iron, nickel) catalysis. A diverse range of 2-alkylbenzoic acids with a variety of substitution patterns could be transformed into the corresponding phthalide products. Based on the mechanistic experimentation and reported prior studies, a possible mechanism for the benzylic oxidative lactonization reaction was proposed with the hypothetic photoactive ternary complex formed between the 2-alkylbenzoic acid substrate, magnesium ion, and bromate anion.