Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255880

RESUMO

Auxin Response Factors (ARFs) mediate auxin signaling and govern diverse biological processes. However, a comprehensive analysis of the ARF gene family and identification of their key regulatory functions have not been conducted in Melastoma dodecandrum, leading to a weak understanding of further use and development for this functional shrub. In this study, we successfully identified a total of 27 members of the ARF gene family in M. dodecandrum and classified them into Class I-III. Class II-III showed more significant gene duplication than Class I, especially for MedARF16s. According to the prediction of cis-regulatory elements, the AP2/ERF, BHLH, and bZIP transcription factor families may serve as regulatory factors controlling the transcriptional pre-initiation expression of MedARF. Analysis of miRNA editing sites reveals that miR160 may play a regulatory role in the post-transcriptional expression of MeARF. Expression profiles revealed that more than half of the MedARFs exhibited high expression levels in the stem compared to other organs. While there are some specific genes expressed only in flowers, it is noteworthy that MedARF16s, MedARF7A, and MedARF9B, which are highly expressed in stems, also demonstrate high expressions in other organs of M. dodecandrum. Further hormone treatment experiments revealed that these MedARFs were sensitive to auxin changes, with MedARF6C and MedARF7A showing significant and rapid changes in expression upon increasing exogenous auxin. In brief, our findings suggest a crucial role in regulating plant growth and development in M. dodecandrum by responding to changes in auxin. These results can provide a theoretical basis for future molecular breeding in Myrtaceae.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Melastomataceae , Embaralhamento de DNA , Flores , Duplicação Gênica , Ácidos Indolacéticos/farmacologia
2.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256078

RESUMO

Heat shock factors (HSFs) are the key regulators of heat stress responses and play pivotal roles in tissue development and the temperature-induced regulation of secondary metabolites. In order to elucidate the roles of HSFs in Cymbidium ensifolium, we conducted a genome-wide identification of CeHSF genes and predicted their functions based on their structural features and splicing patterns. Our results revealed 22 HSF family members, with each gene containing more than one intron. According to phylogenetic analysis, 59.1% of HSFs were grouped into the A subfamily, while subfamily HSFC contained only two HSFs. And the HSF gene families were differentiated evolutionarily between plant species. Two tandem repeats were found on Chr02, and two segmental duplication pairs were observed on Chr12, Chr17, and Chr19; this provided evidence for whole-genome duplication (WGD) events in C. ensifolium. The core region of the promoter in most CeHSF genes contained cis-acting elements such as AP2/ERF and bHLH, which were associated with plant growth, development, and stress responses. Except for CeHSF11, 14, and 19, each of the remaining CeHSFs contained at least one miRNA binding site. This included binding sites for miR156, miR393, and miR319, which were responsive to temperature and other stresses. The HSF gene family exhibited significant tissue specificity in both vegetative and floral organs of C. ensifolium. CeHSF13 and CeHSF15 showed relatively significant expression in flowers compared to other genes. During flower development, CeHSF15 exhibited markedly elevated expression in the early stages of flower opening, implicating critical regulatory functions in organ development and floral scent-related regulations. During the poikilothermic treatment, CeHSF14 was upregulated over 200-fold after 6 h of heat treatment. CeHSF13 and CeHSF14 showed the highest expression at 6 h of low temperature, while the expression of CeHSF15 and CeHSF21 continuously decreased at a low temperature. The expression patterns of CeHSFs further confirmed their role in responding to temperature stress. Our study may help reveal the important roles of HSFs in plant development and metabolic regulation and show insight for the further molecular design breeding of C. ensifolium.


Assuntos
Temperatura Baixa , Resposta ao Choque Térmico , Temperatura , Filogenia , Resposta ao Choque Térmico/genética , Sítios de Ligação
3.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003550

RESUMO

AP2/ERF transcription factors play crucial roles in various biological activities, including plant growth, development, and responses to biotic and abiotic stressors. However, limited research has been conducted on the AP2/ERF genes of Melastoma dodecandrum for breeding of this potential fruit crop. Leveraging the recently published whole genome sequence, we conducted a comprehensive assessment of this superfamily and explored the expression patterns of AP2/ERF genes at a genome-wide level. A significant number of genes, totaling 218, were discovered to possess the AP2 domain sequence and displayed notable structural variations among five subfamilies. An uneven distribution of these genes was observed on 12 pseudochromosomes as the result of gene expansion facilitated by segmental duplications. Analysis of cis-acting elements within promoter sites and 87.6% miRNA splicing genes predicted their involvement in multiple hormone responses and abiotic stresses through transcriptional and post-transcriptional regulations. Transcriptome analysis combined with qRT-PCR results indicated that certain candidate genes are involved in tissue formation and the response to developmental changes induced by IAA hormones. Overall, our study provides valuable insights into the evolution of ERF genes in angiosperms and lays a solid foundation for future breeding investigations aimed at improving fruit quality and enhancing adaptation to barren land environments.


Assuntos
Melhoramento Vegetal , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Família Multigênica , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA