Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34169324

RESUMO

The superior performance of machine-learning scoring functions for docking has caused a series of debates on whether it is due to learning knowledge from training data that are similar in some sense to the test data. With a systematically revised methodology and a blind benchmark realistically mimicking the process of prospective prediction of binding affinity, we have evaluated three broadly used classical scoring functions and five machine-learning counterparts calibrated with both random forest and extreme gradient boosting using both solo and hybrid features, showing for the first time that machine-learning scoring functions trained exclusively on a proportion of as low as 8% complexes dissimilar to the test set already outperform classical scoring functions, a percentage that is far lower than what has been recently reported on all the three CASF benchmarks. The performance of machine-learning scoring functions is underestimated due to the absence of similar samples in some artificially created training sets that discard the full spectrum of complexes to be found in a prospective environment. Given the inevitability of any degree of similarity contained in a large dataset, the criteria for scoring function selection depend on which one can make the best use of all available materials. Software code and data are provided at https://github.com/cusdulab/MLSF for interested readers to rapidly rebuild the scoring functions and reproduce our results, even to make extended analyses on their own benchmarks.


Assuntos
Benchmarking/métodos , Aprendizado de Máquina , Modelos Estatísticos , Algoritmos , Benchmarking/normas , Bases de Dados Factuais , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Análise de Regressão , Reprodutibilidade dos Testes , Fluxo de Trabalho
2.
Int J Med Sci ; 20(8): 1009-1023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484808

RESUMO

Ischemic stroke (IS) is the majority of strokes which remain the second leading cause of deaths in the last two decades. Circulating microRNAs (miRNAs) have been suggested as potential diagnostic and therapeutic tools for IS by previous studies analyzing their differential expression. However, inconclusive and controversial conclusions of these results have to be addressed. In this study, comprehensive analysis and real-world validation were performed to assess the associations between circulating miRNAs and IS. 29 studies with 112 miRNAs were extracted after manual selection and filtering, 12 differentially expressed miRNAs were obtained from our results of meta-analysis. These miRNAs were evaluated in 20 IS patients, compared to 20 healthy subjects. 4 miRNAs (hsa-let-7e-5p, hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-185-5p) exhibited the significant expression level in IS patient plasma samples. Pathway and biological process enrichment analysis for the target genes of the 4 validated miRNAs identified cellular senescence and neuroinflammation as key post-IS response pathways. The results of our analyses closely correlated with the pathogenesis and implicated pathways observed in IS subjects suggested by the literature, which may provide aid in the development of circulating diagnostic or therapeutic targets for IS patients.


Assuntos
MicroRNA Circulante , AVC Isquêmico , MicroRNAs , Acidente Vascular Cerebral , Humanos , MicroRNAs/metabolismo , Biomarcadores
3.
Int J Med Sci ; 20(12): 1600-1615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859697

RESUMO

Uterine Corpus Endometrial Carcinoma (UCEC) is one of the major malignant tumors of the female reproductive system. However, there are limitations in the currently available diagnostic approaches for UCEC. Long non-coding RNAs (lncRNAs) play important roles in regulating biological processes as competitive endogenous RNA (ceRNA) in tumors. To study the potential of lncRNAs as non-invasive diagnostic tumor markers, RNA-sequencing dataset of UCEC patients from The Cancer Genome Atlas was used to identify differentially expressed genes. A lncRNA-miRNA-mRNA ceRNA network was constructed by differentially expressed lncRNAs, miRNAs and miRNAs. Pathway enrichment and functional analysis for the mRNAs in the constructed ceRNA network provide the direction of future research for UCEC by demonstrating the most affected processes and pathways. Seven potential lncRNA biomarkers (C20orf56, LOC100144604, LOC100190940, LOC151534, LOC727677, FLJ35390, LOC158572) were validated in UCEC patients by quantitative real-time PCR. Notably, LOC100190940 and LOC158572 were identified as novel RNA molecules with unknown functions. Receiver operating characteristic (ROC) curve analysis demonstrated that the combined 7 lncRNAs had a high diagnostic value for UCEC patients with area under curve (AUC) of 0.941 (95% CI: 0.875-0.947). Our study highlights the potential of the validated 7 lncRNAs panel as diagnostic biomarkers in UCEC, providing new insights into the UCEC pathogenesis.


Assuntos
Neoplasias do Endométrio , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Redes Reguladoras de Genes/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Prognóstico , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias do Endométrio/diagnóstico , Neoplasias do Endométrio/genética
4.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207376

RESUMO

A better understanding of the mechanism of primordial follicle activation will help us better understand the causes of premature ovarian insufficiency (POI), and will help us identify new drugs that can be applied to the clinical treatment of infertility. In this study, single oocytes were isolated from primordial and primary follicles, and were used for gene profiling with TaqMan array cards. Bioinformatics analysis was performed on the gene expression data, and Ingenuity Pathway Analysis was used to analyze and predict drugs that affect follicle activation. An ovarian in vitro culture system was used to verify the function of the drug candidates, and we found that curcumin maintains the ovarian reserve. Long-term treatment with 100 mg/kg curcumin improved the ovarian reserve indicators of AMH, FSH, and estradiol in aging mice. Mechanistic studies show that curcumin can affect the translocation of FOXO3, thereby inhibiting the PTEN-AKT-FOXO3a pathway and protecting primordial follicles from overactivation. These results suggest that curcumin is a potential drug for the treatment of POI patients and for fertility preservation.


Assuntos
Curcumina/farmacologia , Proteína Forkhead Box O3/metabolismo , Oócitos/efeitos dos fármacos , Reserva Ovariana , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Oócitos/citologia , Oócitos/metabolismo , Oogênese , Folículo Ovariano/citologia , Folículo Ovariano/efeitos dos fármacos , Transdução de Sinais , Análise de Célula Única , Transcriptoma
5.
Cell Physiol Biochem ; 46(6): 2215-2231, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29734189

RESUMO

BACKGROUND/AIMS: PITX1 has been identified as a potential tumor-suppressor gene in several malignant tumors. The molecular mechanism underlying PITX1, particularly its function as a transcription factor regulating gene expression during tumorigenesis, is still poorly understood. METHODS: The expression level and location of PITX1 were determined by quantitative reverse transcription PCR (qRT-PCR) and immunohistochemical staining in gastric cancer (GC). The effect of PITX1 on the GC cell proliferation and tumorigenesis was analyzed in vitro and in vivo. To explore how PITX1 suppresses cell proliferation, we used PITX1-ChIP-sequencing to measure genome-wide binding sites of PITX1 and assessed global function associations based on its putative target genes. ChIP-PCR, electrophoretic mobility shift assay, and promoter reporter assays examined whether PITX1 bound to PDCD5 and regulated its expression. The function of PDCD5 in GC cell apoptosis was further examined in vitro and in vivo. The relationship between the PITX1 protein level and GC patient prognosis was evaluated by the Kaplan-Meier estimator. Meanwhile, the expression level of miR-19a-3p, which is related to PITX1, was also detected by luciferase reporter assay, qRT-PCR, and western blotting. RESULTS: The expression level of PITX1 was decreased in GC tissues and cell lines. Elevated PITX1 expression significantly suppressed the cell proliferation of GC cells and tumorigenesis in vitro and in vivo. PITX1 knockdown blocked its inhibition of GC cell proliferation. PITX1 bound to whole genome-wide sites, with these targets enriched on genes with functions mainly related to cell growth and apoptosis. PITX1 bound to PDCD5, an apoptosis-related gene, during tumorigenesis, and cis-regulated PDCD5 expression. Increased PDCD5 expression in GC cells not only induced GC cell apoptosis, but also suppressed GC cell growth in vitro and in vivo. Moreover, PITX1 expression was regulated by miR-19a-3p. More importantly, a decreased level of PITX1 protein was correlated with poor GC patient prognosis. CONCLUSION: Decreased expression of PITX1 predicts shorter overall survival in GC patients. As a transcriptional activator, PITX1 regulates apoptosis-related genes, including PDCD5, during gastric carcinogenesis. These data indicate PDCD5 to be a novel and feasible therapeutic target for GC.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas de Neoplasias/genética , Fatores de Transcrição Box Pareados/genética , Neoplasias Gástricas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Mucosa Gástrica/metabolismo , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Estômago/patologia , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patologia , Ativação Transcricional
6.
Cell Mol Life Sci ; 74(14): 2679-2688, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28271164

RESUMO

The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Duplicação Gênica , Mutação/genética , Oncogenes , Tirosina/metabolismo , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Apoptose , Linhagem Celular , Proliferação de Células , Regulação para Baixo , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Camundongos Endogâmicos BALB C , Proteínas Mutantes/metabolismo , Células Mieloides/metabolismo , Fosforilação , Estabilidade Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteólise , Transdução de Sinais , Ubiquitinação
7.
Cell Mol Life Sci ; 71(11): 2179-92, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24158497

RESUMO

Through subtraction of tumor-specific CpG methylation, we identified receptor tyrosine kinase-like orphan receptor 2 (ROR2) as a candidate tumor suppressor gene (TSG). ROR2 is a specific receptor or co-receptor for WNT5A, involved in canonical and non-canonical WNT signaling, with its role in tumorigenesis controversial. We characterized its functions and related cell signaling in common carcinomas. ROR2 was frequently silenced by promoter CpG methylation in multiple carcinomas including nasopharyngeal, esophageal, gastric, colorectal, hepatocellular, lung, and breast cancers, while no direct correlation of ROR2 and WNT5A expression was observed. Ectopic expression of ROR2 resulted in tumor suppression independent of WNT5A status, through inhibiting tumor cell growth and inducing cell cycle arrest and apoptosis. ROR2 further suppressed epithelial-mesenchymal transition and tumor cell stemness through repressing ß-catenin and AKT signaling, leading to further inhibition of tumor cell migration/invasion and increased chemo-sensitivity. Thus ROR2, as an epigenetically inactivated TSG, antagonizes both ß-catenin and AKT signaling in multiple tumorigenesis. Its epigenetic silencing could be a potential tumor biomarker and therapeutic target for carcinomas.


Assuntos
Carcinoma/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , beta Catenina/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular , Ilhas de CpG , Metilação de DNA , Epigênese Genética , Transição Epitelial-Mesenquimal/genética , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Transdução de Sinais , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a , beta Catenina/metabolismo
8.
J Pathol ; 229(1): 62-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22926751

RESUMO

Gastric and colorectal cancers are among the most common cancers worldwide and cause serious cancer mortality. Both epigenetic and genetic disruptions of tumour suppressor genes (TSGs) are frequently involved in their pathogenesis. Here, we studied the epigenetic and genetic alterations of a novel TSG-PCDH17 and its functions in the pathogenesis of these tumours. We found that PCDH17 was frequently silenced and methylated in almost all gastric and colorectal tumour cell lines as well as in ∼95% of primary tumours, but not in normal gastric and colonic mucosa. Moreover, its deletion was detected in only 18% of gastric and 12% of colorectal cancer tissues, suggesting that epigenetic and genetic inactivation of PCDH17 are both involved in gastric and colorectal tumourigenesis. PCDH17 protein expression was significantly correlated with low tumour stage and less lymph node metastasis of gastric and colorectal cancer patients, indicating its potential as a tumour marker. Restoring PCDH17 expression inhibited tumour cell growth in vitro and in vivo through promoting apoptosis, as evidenced by increased TUNEL staining and caspase-3 activation. Furthermore, PCDH17-induced autophagy, along with increased numbers of autophagic vacuoles and up-regulated autophagic proteins Atg-5, Atg-12 and LC3B II. Thus, PCDH17 acts as a tumour suppressor, exerting its anti-proliferative activity through inducing apoptosis and autophagy, and is frequently silenced in gastric and colorectal cancers. PCDH17 methylation is a tumour-specific event that could serve as an epigenetic biomarker for these tumours.


Assuntos
Apoptose , Autofagia , Biomarcadores Tumorais/genética , Caderinas/genética , Neoplasias Colorretais/genética , Metilação de DNA , Neoplasias Gástricas/genética , Proteínas Supressoras de Tumor/genética , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína 12 Relacionada à Autofagia , Proteína 5 Relacionada à Autofagia , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Caspase 3/metabolismo , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação para Baixo , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células HCT116 , Humanos , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Regiões Promotoras Genéticas , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fatores de Tempo , Transfecção , Carga Tumoral , Proteínas Supressoras de Tumor/metabolismo
9.
Breast Cancer Res ; 15(2): R23, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23497530

RESUMO

INTRODUCTION: Aberrant activation of Wnt/ß-catenin signaling plays an important role in the pathogenesis of breast cancer. DACT1 (Dapper/Frodo) has been identified as involved in antagonizing Wnt/ß-catenin signaling through interacting with Dishevelled (Dvl), a central mediator of Wnt signaling, whereas its role in breast tumorigenesis remains unclear. METHODS: We examined DACT1 expression in breast cancer cell lines and primary tumors with semiquantitative or quantitative RT-PCR and immunochemistry, and further evaluated the promoter methylation of DACT1 with methylation-specific PCR (MSP). We also explored the tumor-suppressive functions of DACT1 in vivo and in vitro, and its related mechanism in breast cancer. RESULTS: We identified DACT1 as a methylated target in our breast cancer epigenome study. Here, we further investigated DACT1 expression in multiple breast cell lines and primary tumors, and further studied its function and molecular mechanisms. We found that DACT1 expression was silenced in eight (88.9%) of nine breast cancer cell lines, and its protein levels were obviously reduced in breast tumors compared with paired surgical-margin tissues. Promoter CpG methylation of DACT1 was detected in five (55.6%) of nine breast cancer cell lines and 40 (29.9%) of 134 primary tumors, but not in surgical-margin tissues and normal breast tissues. Demethylation treatment of breast cancer cell lines restored DACT1 expression along with promoter demethylation, suggesting that an epigenetic mechanism mediates DACT1 silencing in breast cancer. Functional assays showed that ectopic expression of DACT1 could inhibit breast tumor cell proliferation in vivo and in vitro through inducing apoptosis, and further suppress tumor cell migration through antagonizing the Wnt/ß-catenin signaling pathway. CONCLUSIONS: Our study demonstrates that DACT1 could function as a tumor suppressor but was frequently downregulated in breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Inativação Gênica , Proteínas Nucleares/metabolismo , Via de Sinalização Wnt , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Western Blotting , Metilação de DNA , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Nus , Proteínas Nucleares/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Mol Pharm ; 10(5): 1901-9, 2013 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-23570548

RESUMO

Nanomedcine holds great potential in cancer therapy due to its flexibility on drug delivery, protection, releasing, and targeting. Epigenetic drugs, such as 2'-deoxy-5-azacytidine (DAC), are able to cause reactive expression of tumor suppressor genes (TSG) in human cancers and, therefore, might be able to enhance the sensitivity of cancer cells to chemotherapy. In this report, we fabricated a lipid-polymer nanoparticle for codelivery of epigenetic drug DAC and traditional chemotherapeutic drug (DOX) to cancer cells and monitored the growth inhibition of the hybrid nanoparticles (NPs) on cancer cells. Our results showed that NPs encapsulating DAC, DOX, or both, could be effectively internalized by cancer cells. More importantly, incorporating DAC into NPs significantly enhanced the sensitivity of cancer cells to DOX by inhibiting cell growth rate and inducing cell apoptosis. Further evidence indicated that DAC encapsulated by NPs was able to rescue the expression of silenced TSG in cancer cells. Overall our work clearly suggested that the resulting lipid-polymer nanoparticle is a potential tool for combining epigenetic therapy and chemotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Azacitidina/análogos & derivados , Doxorrubicina/administração & dosagem , Nanocápsulas/química , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose/efeitos dos fármacos , Azacitidina/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Decitabina , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Epigênese Genética/efeitos dos fármacos , Genes Supressores de Tumor/efeitos dos fármacos , Humanos , Ácido Láctico/química , Nanocápsulas/ultraestrutura , Fosfatidiletanolaminas/química , Polietilenoglicóis/química , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
11.
Biomedicines ; 11(9)2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37760991

RESUMO

BACKGROUND: Stroke represents the second leading cause of death and the primary cause of long-term disability in humans. The transplantation of mesenchymal stem cells (MSC) reportedly improves functional outcomes in animal models of cerebral ischemia. Here, we evaluate the neuroprotective potential of extracellular vesicles secreted from human-induced pluripotent stem cell-derived mesenchymal stem cells (hiPS-MSC-EV) using preclinical cell-based and animal-based models of ischemic strokes. METHODS: hiPS-MSC-EV were isolated using an ultrafiltration method. HT22 cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury for 2 h, followed by treatment with hiPS-MSC-EV (100 µg/mL). Male C57BL/6 mice were subjected to middle cerebral artery occlusion (MCAO) followed by an intravenous injection of hiPS-MSC-EV (100 µg) at three distinct time points. RESULTS: Our experimental approach revealed hiPS-MSC-EV promoted HT22 cell proliferation, reduced apoptosis, and altered cellular morphology following OGD/R. In addition, hiPS-MSC-EV reduced the volume of infarcts, improved spontaneous movement abilities, and enhanced angiogenesis by expressing the VEGF and CXCR4 proteins in the infarcted hemisphere of the MCAO-treated mouse model. CONCLUSION: Our findings provide evidence of the potential neuroprotective effects of hiPS-MSC-derived extracellular vesicles (hiPS-MSC-EVs) in both in vitro and in vivo mouse models of ischemic stroke. These results suggest that hiPS-MSC-EVs may play a role in neurorestoration and offer insights into potential cell-free strategies for addressing cerebral ischemia.

12.
Zool Res ; 44(3): 620-635, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-36866625

RESUMO

Chemotherapy can significantly reduce follicle counts in ovarian tissues and damage ovarian stroma, causing endocrine disorder, reproductive dysfunction, and primary ovarian insufficiency (POI). Recent studies have suggested that extracellular vesicles (EVs) secreted from mesenchymal stem cells (MSCs) exert therapeutic effects in various degenerative diseases. In this study, transplantation of EVs from human induced pluripotent stem cell-derived MSCs (iPSC-MSC-EVs) resulted in significant restoration of ovarian follicle numbers, improved granulosa cell proliferation, and inhibition of apoptosis in chemotherapy-damaged granulosa cells, cultured ovaries, and in vivo ovaries in mice. Mechanistically, treatment with iPSC-MSC-EVs resulted in up-regulation of the integrin-linked kinase (ILK) -PI3K/AKT pathway, which is suppressed during chemotherapy, most likely through the transfer of regulatory microRNAs (miRNAs) targeting ILK pathway genes. This work provides a framework for the development of advanced therapeutics to ameliorate ovarian damage and POI in female chemotherapy patients.


Assuntos
Antineoplásicos , Vesículas Extracelulares , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Feminino , Animais , Camundongos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
13.
Elife ; 122023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36942942

RESUMO

The acrosome is a membranous organelle positioned in the anterior portion of the sperm head and is essential for male fertility. Acrosome biogenesis requires the dynamic cytoskeletal shuttling of vesicles toward nascent acrosome which is regulated by a series of accessory proteins. However, much remains unknown about the molecular basis underlying this process. Here, we generated Ssh2 knockout (KO) mice and HA-tagged Ssh2 knock-in (KI) mice to define the functions of Slingshot phosphatase 2 (SSH2) in spermatogenesis and demonstrated that as a regulator of actin remodeling, SSH2 is essential for acrosome biogenesis and male fertility. In Ssh2 KO males, spermatogenesis was arrested at the early spermatid stage with increased apoptotic index and the impaired acrosome biogenesis was characterized by defective transport/fusion of proacrosomal vesicles. Moreover, disorganized F-actin structures accompanied by excessive phosphorylation of COFILIN were observed in the testes of Ssh2 KO mice. Collectively, our data reveal a modulatory role for SSH2 in acrosome biogenesis through COFILIN-mediated actin remodeling and the indispensability of this phosphatase in male fertility in mice.


Assuntos
Acrossomo , Actinas , Masculino , Camundongos , Animais , Acrossomo/metabolismo , Actinas/metabolismo , Sêmen/metabolismo , Espermatogênese , Camundongos Knockout , Fatores de Despolimerização de Actina/metabolismo
14.
J Transl Med ; 10: 209, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23050586

RESUMO

BACKGROUND: Inactivaion of tumor suppressor genes (TSGs) by promoter CpG methylation frequently occurs in tumorigenesis, even in the early stages, contributing to the initiation and progression of human cancers. Deleted in lung and esophageal cancer 1 (DLEC1), located at the 3p22-21.3 TSG cluster, has been identified frequently silenced by promoter CpG methylation in multiple carcinomas, however, no study has been performed for lymphomas yet. METHODS: We examined the expression of DLEC1 by semi-quantitative reverse transcription (RT)-PCR, and evaluated the promoter methylation of DLEC1 by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS) in common lymphoma cell lines and tumors. RESULTS: Here we report that DLEC1 is readily expressed in normal lymphoid tissues including lymph nodes and PBMCs, but reduced or silenced in 70% (16/23) of non-Hodgkin and Hodgkin lymphoma cell lines, including 2/6 diffuse large B-cell (DLBCL), 1/2 peripheral T cell lymphomas, 5/5 Burkitt, 6/7 Hodgkin and 2/3 nasal killer (NK)/T-cell lymphoma cell lines. Promoter CpG methylation was frequently detected in 80% (20/25) of lymphoma cell lines and correlated with DLEC1 downregulation/silencing. Pharmacologic demethylation reversed DLEC1 expression in lymphoma cell lines along with concomitant promoter demethylation. DLEC1 methylation was also frequently detected in 32 out of 58 (55%) different types of lymphoma tissues, but not in normal lymph nodes. Furthermore, DLEC1 was specifically methylated in the sera of 3/13 (23%) Hodgkin lymphoma patients. CONCLUSIONS: Thus, methylation-mediated silencing of DLEC1 plays an important role in multiple lymphomagenesis, and may serve as a non-invasive tumor marker for lymphoma diagnosis.


Assuntos
Cromossomos Humanos Par 3 , Epigênese Genética , Inativação Gênica , Doença de Hodgkin/genética , Linfoma não Hodgkin/genética , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética , Ilhas de CpG , Metilação de DNA , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
BMC Cancer ; 12: 125, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22458933

RESUMO

BACKGROUND: Epstein-Barr virus (EBV) establishes its latency in EBV-associated malignancies, accompanied by occasionally reactivated lytic cycle. Promoter CpG methylation of EBV genome plays an essential role in maintaining viral latency. Two immediate-early (IE) genes, BZLF1 and BRLF1, induce the switch from latent to lytic infection. Studies of methylation-dependent binding of BZLF1 and BRLF1 to EBV promoters have been well reported, but little is known about the methylation status of BZLF1 and BRLF1 promoters (Zp and Rp) in tumor samples. METHODS: We evaluated the methylation profiles of Zp and Rp by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS), as well as BZLF1 and BRLF1 expression by semiquantitative reverse transcription (RT)-PCR in tumors of epithelial, NK- and B-cell origins. RESULTS: We found that both Zp and Rp were hypermethylated in all studied EBV-positive cell lines and tumors of lymphoid (B- or NK cell) or epithelial origin, while unmethylated Zp and Rp alleles were detected in cell lines expressing BZLF1 and BRLF1. Following azacytidine treatment or combined with trichostatin A (TSA), the expression of BZLF1 and BRLF1 was restored along with concomitant promoter demethylation, which subsequently induced the reactivation of early lytic gene BHRF1 and late lytic gene BLLF1. CONCLUSIONS: Hypermethylation of Zp and Rp mediates the frequent silencing of BZLF1 and BRLF1 in EBV-associated tumors, which could be reactivated by demethylation agent and ultimately initiated the EBV lytic cascade.


Assuntos
Metilação de DNA/genética , Genes Precoces/genética , Herpesvirus Humano 4/genética , Proteínas Imediatamente Precoces/metabolismo , Neoplasias/metabolismo , Transativadores/metabolismo , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Humanos , Proteínas Imediatamente Precoces/genética , Células Matadoras Naturais/metabolismo , Neoplasias/genética , Neoplasias/virologia , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/genética
16.
Chem Commun (Camb) ; 58(11): 1760-1763, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35037666

RESUMO

We design mismatched fluorescent probes to directly monitor the long noncoding RNA (lncRNA) in living cells. The introduction of mismatched bases in the fluorescent probe greatly enhances the strand displacement reaction rate toward the target lncRNA. These mismatched probes can monitor the intracellular lncRNA expression level in various cell lines and discriminate cancer cells from normal cells, holding great potential in fundamental biomedical research and clinical disease diagnosis.


Assuntos
Corantes Fluorescentes
17.
Asia Pac J Clin Oncol ; 18(2): e79-e86, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34161675

RESUMO

AIM: Zinc finger and BTB domain-containing protein 28 (ZBTB28) is a potential tumor suppressor for some cancers. However, its epigenetic regulation and functions in renal cell carcinoma (RCC) remain to be elucidated. METHODS: The expression of ZBTB28 mRNA was analyzed by semi-quantitative reverse transcription polymerase chain reaction (PCR) in nine RCC cell lines and normal kidney tissues. Methylation status of ZBTB28 promoter was assessed by methylation-specific PCR in RCC cell lines, primary RCC, tumors and adjacent tissues. The involvement of ZBTB28 in cell proliferation and migration was investigated. RESULTS: ZBTB28 promoter was hypermethylated in 88.9% (8/9) of RCC cell lines with reduced ZBTB28 mRNA expression, and could be reversed by DNA methyltransferase inhibitors. The methylation of ZBTB28 promoter was detected in 73.5% (36/49) of primary RCC tissues, compared with 7.1% (1/14) in normal tissues. Overexpression of ZBTB28 significantly inhibited RCC cell proliferation and migration, and induced apoptosis. Further analyses revealed that ZBTB28 upregulation could inhibit multiple oncogenic signaling transduction pathways. CONCLUSION: ZBTB28 is frequently silenced by promoter methylation in RCC pathogenesis and functions as a novel tumor suppressive gene. ZBTB28 may be a potential target for the development of RCC therapeutic strategies.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Metilação de DNA/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Rim/metabolismo , Rim/patologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , RNA Mensageiro/metabolismo
18.
Neuroscience ; 480: 65-78, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34695538

RESUMO

Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease. The purpose of this study was to investigate the link between microbiota composition in important mucosal interfaces (oral, nasal, and intestinal) and PD. Sequencing was undertaken of the V4-V5 region of the 16S ribosomal RNA (rRNA) gene of the microbiome from the oral cavity, nasal cavity, and gut of 91 PD patients and 91 healthy controls. Significant differences were found in microbiota composition in the oral cavity and gut, but not the nasal cavity, between PD patients and healthy controls after adjusting for age, gender, and body mass index (BMI). More genera in the oral cavity were significantly positively correlated with clinical characteristics, such as the HAMA and HAMD rating scales. The taxa c_Clostridia, o_Clostridiales, and f_Ruminococcaceae in the gut microbiota were associated with weight and MMSE score. Furthermore, as a result of dysbiosis, there was an enrichment of ion channel-, oxidative phosphorylation-, and carbohydrate metabolism-related pathways in the oral cavity and glycolysis/gluconeogenesis- and propanoate metabolism-related pathways in the intestine. Changes in these pathways can influence metabolism and inflammation, thereby contributing to PD pathogenesis. In addition, several subnetworks containing differentially abundant microbiota in the oral cavity and gut samples from PD patients may regulate microbial composition and function in PD. Overall, our results indicate that oral and gut dysbiosis may affect PD progression and provide a basis for understanding the pathogenesis of PD and identifying potential therapeutic targets for the treatment of this disease.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Doença de Parkinson , Disbiose , Humanos , RNA Ribossômico 16S/genética
19.
Hematology ; 26(1): 976-984, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34871535

RESUMO

Multiple myeloma (MM) is one of the most common types of hematologic malignancy for which the underlying molecular mechanisms remain largely unclear. Dysregulated miRNA expression has been shown to be involved in MM tumorigenesis, progression and drug response. Therefore, a comprehensive analysis based on miRNA-level integrated strategy was performed.This study aimed to elucidate key miRNA signatures and pathways in MM by integrated bioinformatics analysis. Expression profiles GSE24371, GSE49261 and GSE54156 were obtained from the Gene Expression Omnibus database, and differentially expressed miRNAs (DEMirs) with p < 0.05 were identified. The target genes of these DEMirs were obtained from ENCORI database, and functional enrichment, subpathway enrichment and protein-protein interaction network construction were performed. The key target genes were identified by random walk algorithm and survival verification was performed.and discussion: First, six up-regulated and four down-regulated DEMirs shared between any two GSE data sets were identified. Second, target genes (DEMirTGs) by up-regulated and down-regulated DEMirs were obtained. Functional and subpathway enrichment analysis showed that these up-regulated DEMirs are consistently involved in the Wnt signaling pathway. Moreover, enrichment of the down-regulated DEMirs is mainly in the MAPK signaling pathway. Finally, a protein-protein interaction sub-network for these DEMirTGs was constructed, the correlations between the two key genes were identified and survival in MM was evaluated using multiple independent data sets.We identified miRNA signatures and key target genes that were closely related to MM biology, and these genes might serve as potential therapeutic targets for MM patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Mieloma Múltiplo/genética , Perfilação da Expressão Gênica , Genômica , Humanos , Mieloma Múltiplo/metabolismo , Mapas de Interação de Proteínas , Transdução de Sinais
20.
Adv Sci (Weinh) ; 8(17): e2100849, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34247447

RESUMO

The regulation of cardiomyocyte differentiation is a fundamental aspect of cardiac development and regenerative medicine. PTEN plays important roles during embryonic development. However, its role in cardiomyocyte differentiation remains unknown. In this study, a low-cost protocol for cardiomyocyte differentiation from mouse embryonic stem cells (ESCs) is presented and it is shown that Pten deletion potently suppresses cardiomyocyte differentiation. Transcriptome analysis shows that the expression of a series of cardiomyocyte marker genes is downregulated in Pten-/- cardiomyocytes. Pten ablation induces Dnmt3b expression via the AKT/FoxO3a pathway and regulates the expression of a series of imprinted genes, including Igf2. Double knockout of Dnmt3l and Dnmt3b rescues the deficiency of cardiomyocyte differentiation of Pten-/- ESCs. The DNA methylomes from wild-type and Pten-/- embryoid bodies and cardiomyocytes are analyzed by whole-genome bisulfite sequencing. Pten deletion significantly promotes the non-CG (CHG and CHH) methylation levels of genomic DNA during cardiomyocyte differentiation, and the non-CG methylation levels of cardiomyocyte genes and Igf2 are increased in Pten-/- cardiomyocytes. Igf2 or Igf1r deletion also suppresses cardiomyocyte differentiation through the MAPK/ERK signaling pathway, and IGF2 supplementation partially rescues the cardiomyocyte differentiation. Finally, Pten conditional knockout mice are generated and the role of PTEN in cardiomyocyte differentiation is verified in vivo.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Miócitos Cardíacos/metabolismo , PTEN Fosfo-Hidrolase/genética , Animais , Metilases de Modificação do DNA/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA