Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(6): 8657-8683, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571119

RESUMO

Fully considering the mechanical and photoelastic anisotropies of monocrystalline silicon, the impacts of spatial symmetries on the stimulated Brillouin scatterings (SBSs) in nanoscale suspended silicon waveguides are studied theoretically and numerically based on group theory. First, starting from an assumption that the principal material coordinate system can be arbitrarily orientated in a waveguide with fixed geometry, the silicon waveguides are systematically classified into a number of point groups according to their spatial symmetry features. Thereafter, the symmetry characteristics of physical fields and SBS opto-mechanical coupling characteristics in the silicon waveguides belonging to different point groups are further examined, and the major new findings can be summarized as follows: The SBS opto-mechanical couplings in several kinds of silicon waveguides with certain nontrivial symmetry features exhibit relatively predictable behaviors in that the opto-mechanical coupling coefficients can be deterministically vanishing or nonvanishing under very few constraints, which can thus serve as general symmetry selection rules for SBSs in suspended silicon waveguides. The results obtained in the present study could be a useful theoretical reference for the design of novel SBS-active silicon photonic devices.

2.
Opt Express ; 22(23): 28443-51, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402086

RESUMO

Phoxonic crystal is a promising material for manipulating sound and light simultaneously. In this paper, we theoretically demonstrate the propagation of acoustic and optical waves along the truncated surface of a two-dimensional square-latticed phoxonic crystal. Further, a phoxonic crystal hetero-structure cavity is proposed, which can simultaneously confine surface acoustic and optical waves. The interface motion and photoelastic effects are taken into account in the acousto-optical coupling. The results show obvious shifts in eigenfrequencies of the photonic cavity modes induced by different phononic cavity modes. The symmetry of the phononic cavity modes plays a more important role in the single-phonon exchange process than in the case of the multi-phonon exchange. Under the same deformation, the frequency shift of the photonic transverse electric mode is larger than that of the transverse magnetic mode.


Assuntos
Acústica , Fenômenos Ópticos , Fônons , Fótons , Cristalização , Análise de Fourier , Propriedades de Superfície
3.
Opt Express ; 21(3): 2727-32, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23481729

RESUMO

We theoretically demonstrate the existence of simultaneous large complete photonic and phononic bandgaps in three-dimensional dielectric phoxonic crystals with a simple cubic lattice. These phoxonic crystals consist of dielectric spheres on the cubic lattice sites connected by thin dielectric cylinders. The simultaneous photonic and phononic bandgaps can exist over a wide range of geometry parameters. The vibration modes corresponding to the phononic bandgap edges are the local torsional resonances of the dielectric spheres and rods. Detailed discussion is presented on the variation of the photonic and phononic bandgaps with the geometry of the structure. Optimal geometry which generates large phoxonic bandgaps is suggested.


Assuntos
Modelos Teóricos , Nanopartículas/química , Refratometria/métodos , Simulação por Computador , Cristalização , Luz , Espalhamento de Radiação
4.
Ultrasonics ; 52(2): 255-65, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21943793

RESUMO

The effects of the Poisson's ratio of the solid host on the band gaps and point defect states of the mixed elastic wave modes in two-dimensional vacuum/solid porous PNCs are studied by numerical simulations. Four typical systems are considered. The four systems are, respectively, (I) the system with a square lattice and circular pores, (II) the system with a hexagonal lattice and circular pores, (III) the system with a square lattice and square pores and (IV) the system with a hexagonal lattice and regular-hexagonal pores. In the latter two systems, with respect to the outer boundaries of the Wigner-Seitz unit cell, the pores rotate 45° and 30°, respectively. Some observable effects of the Poisson's ratio are found in the numerical results. Especially, the variations of the band gap boundaries with the Poisson's ratio exhibit relatively consistent behaviors. With the increase of the Poisson's ratio, the normalized frequency of a band gap boundary generally increases, except that in system (III) the normalized frequency of the upper boundary of the first band gap remains almost unchanged. Detailed interpretations on this phenomenon are given.


Assuntos
Acústica , Modelos Teóricos , Distribuição de Poisson , Porosidade , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA