Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Environ Res ; 251(Pt 2): 118671, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479719

RESUMO

The low cost and high efficiency of microwave-assisted regeneration render it a viable alternative to conventional regeneration methods. To enhance the regeneration performance, we developed a coupled electromagnetic, heat, and mass transfer model to investigate the heat and mass transfer mechanisms of activated carbon during microwave-assisted regeneration. Simulation results demonstrated that the toluene desorption process is governed by temperature distribution. Changing the input power and flow rate can promote the intensity of hot spots and adjust their distribution, respectively, thereby accelerating toluene desorption, inhibiting readsorption, and promoting regeneration efficiency. Ultimately, controlling the input power and flow rate can flexibly adjust toluene emissions to satisfy the processing demands of desorbed toluene. Taken together, this study provides a comprehensive understanding of the heat and mass transfer mechanisms of microwave-assisted regeneration and insights into adsorbent regeneration.


Assuntos
Carvão Vegetal , Temperatura Alta , Micro-Ondas , Tolueno , Tolueno/química , Adsorção , Carvão Vegetal/química , Modelos Químicos
2.
Sep Purif Technol ; 2622021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34366698

RESUMO

H2O2 generation by 2-electron oxygen electroreduction reaction (2eORR) has attracted great attention as an alternative to the industry-dominant anthraquinone process. Electro-Fenton (EF) process, which relies on the H2O2 electrogeneration, is regarded as an important environmental application of H2O2 generation by 2eORR. However, its application is hindered by the relatively expensive electrode materials. Proposing cathode materials with low cost and facile synthetic procedures are the priority to advance the EF process. In this work, a composite cathode structure that uses graphitic granular bamboo-based biochar (GB) and stainless steel (SS) mesh (GBSS) is proposed, where SS mesh functions as current distributor and GB supports synergistic H2O2 electrogeneration and activation. The graphitic carbon makes GB conductive and the oxygen-containing groups serve as active sites for H2O2 production. 11.3 mg/L H2O2 was produced from 2.0 g GB at 50 mA after 50 min under neutral pH without external O2/air supply. The O-doped biochar further increased the H2O2 yield to 18.3 mg/L under same conditions. The GBSS electrode is also effective for H2O2 activation to generate ·OH, especially under neutral pH. Ultimately, a neutral Fe-free EF process enabled by GBSS cathode is effective for removal of various model organic pollutants (reactive blue 19, orange II, 4-nitrophenol) within 120 min, and for their partial mineralization (48.4% to 63.5%). Long-term stability of the GBSS electrode for H2O2 electrogeneration, H2O2 activation, and pollutants degradation were also examined and analyzed. This work offers a promising application for biomass waste for removals of organic pollutants in neutral Fe-free EF process.

3.
FASEB J ; 33(10): 10859-10871, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31266356

RESUMO

Ischemic spinal cord injury (ISCI) results in the motor sensory dysfunction of the limbs below the injury site. In response to the injury, astrocytes develop into neuroprotective astrocytes [(neurotrophic reactive astrocytes (A2s)] to mitigate the damage. MicroRNA (miR)-21 can promote the development of neuroinflammation in previous studies. Our aim was to investigate the effect of miR-21 on its polarization. We used the abdominal aortic occlusion model in vivo. Immunohistochemistry was used to detect the distribution of A2s in the spinal cord. We used an oxygen glucose deprivation method to model astrocytes ischemia in vitro and tested proliferation, migration, and excitability of A2s using an 5-ethynyl -2'-deoxyuridine kit, wound scratch assay, and calcium-ion probe. After adjustment, we detected the model and target genes of A2s using PCR, Western blot, immunofluorescence, and chromatin immunoprecipitation. We demonstrated in vivo that naive astrocytes were transformed into A2s by ischemia. And in vitro miR-21, which can regulate the signal transducer and activator of transcription-3 pathway, can transform neurotoxic reactive astrocyte into A2. Moreover, we also verified the mechanism of A2s promoting synaptic formation and nerve growth. miR-21 is a switch to regulate the polarization of reactive astrocyte, and it promoted synapsis formation and nerites growth after acute ISCI.-Su, Y., Chen, Z., Du, H., Liu, R., Wang, W., Li, H., Ning, B. Silencing miR-21 induces polarization of astrocytes to the A2 phenotype and improves the formation of synapses by targeting glypican 6 via the signal transducer and activator of transcription-3 pathway after acute ischemic spinal cord injury.


Assuntos
Astrócitos/metabolismo , Glipicanas/metabolismo , MicroRNAs/metabolismo , Fator de Transcrição STAT3/metabolismo , Traumatismos da Medula Espinal/metabolismo , Sinapses/metabolismo , Animais , Astrócitos/citologia , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neurogênese , Neurônios/citologia , Neurônios/metabolismo
4.
Exp Cell Res ; 370(1): 24-30, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29883711

RESUMO

Traumatic spinal cord injury (SCI) causes permanent disability to at least 180,000 people per year worldwide. Early regulation of spinal fibroblast proliferation may inhibit fibrotic scar formation, allowing the creation of a favorable environment for neuronal regeneration and thereby enhancing recovery from traumatic SCIs. In this study, we aimed to identify the role of microRNA-21a-5p (miR-21a-5p) in regulating spinal fibroblasts after mechanical trauma and to investigate the dysregulation of miR-21a-5p in the pathological process of spinal SCI. We investigated the differential expression of microRNAs in primary spinal fibroblasts after mechanical trauma and found that the expression of miR-21a-5p was higher in spinal fibroblasts after scratch damage (SD). In addition, mouse spinal fibroblasts were transfected with miR-21a-5p mimics/inhibitor, and the role of miR-21a-5p in spinal fibrogenic activation was analyzed. These experiments demonstrated that miR-21a-5p overexpression promoted fibrogenic activity in spinal fibroblasts after mechanical trauma, as well as enhancing proliferation and attenuating apoptosis in spinal fibroblasts. Finally, the potential role of miR-21a-5p in regulating the Smad signaling pathway was examined. MiR-21a-5p activated the Smad signaling pathway by enhancing Smad2/3 phosphorylation. These results suggest that miR-21a-5p promotes spinal fibrosis after mechanical trauma. Based on these findings, we propose a close relationship between miR-21a-5p and spinal fibrosis, providing a new potential therapeutic target for SCI.


Assuntos
Fibroblastos/patologia , Fibrose/genética , MicroRNAs/genética , Traumatismos da Medula Espinal/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Células Cultivadas , Fibrose/patologia , Camundongos , Fosforilação/genética , Transdução de Sinais/genética , Traumatismos da Medula Espinal/patologia
5.
Environ Sci Technol ; 51(21): 12692-12698, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28992404

RESUMO

Although the literature has reported enhanced indirect sulfation of limestone by adding Na2CO3, the amount of Na2CO3 additive required to achieve high CaO conversion is typically high (∼4.0 mol %), which commonly results in adverse effects in fluidized-bed combustion boiler systems and increased cost of sorbents. In this work, we demonstrate for the first time that trace Na2CO3 (0.1 mol %) can significantly enhance the sulfate conversion of limestone. This enhanced sulfation is attributed to the increased surface area and optimized pore size distribution. The trace Na2CO3 additive splits the pores of the original sorbents peaking at ∼70 nm into pores peaking at ∼4 nm and ∼140 nm due to the slight promotion of sintering. This well-developed pore structure results in a relatively high reactivity for sulfation. Thus, the Na2CO3 additive influences the sorbent reactivity in two ways: (1) at less than 0.5 mol %, tuning its pore structure; (2) at more than 0.5 mol %, promoting the product layer diffusion. We also find that trace amount of other metal salts, such as CaCl2 and NaCl, clearly enhance the sulfation of limestone. The strategy of enhancing limestone sulfation by the addition of trace amount of metal salts offers evident engineering and economic advantage.


Assuntos
Carbonato de Cálcio , Dióxido de Enxofre , Difusão
6.
Cell Host Microbe ; 32(1): 3-4, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38211562

RESUMO

In a recent issue of Cell, Deng et al. show that S. aureus serine protease V8 triggers itch, independent of inflammation, by activating sensory neurons through PAR1. This study presents mechanistic insights into pruritogenic bacteria and their interactions with sensory neurons while providing a possible approach for treating itch-related diseases.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus , Humanos , Células Receptoras Sensoriais/fisiologia , Prurido , Inflamação
7.
Folia Histochem Cytobiol ; 62(1): 25-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563050

RESUMO

INTRODUCTION: Endometriosis (EMs), manifested by pain and infertility, is a chronic inflammatory disease. The precise pathophysiology of this disease remains uncertain. Insulin-like growth factor-2 mRNA-binding protein 1 (IGF2BP1) and polypyrimidine tract-binding protein 1 (PTBP1) have both been found to regulate proliferation, apoptosis, and invasion. This study aimed to investigate the effects of IGF2BP1/PTBP1 in treating EMs. MATERIALS AND METHODS: qRT-PCR and western blotting were employed to quantify IGF2BP1 and PTBP1 expression in six patients with EMs (mean age 33.83 years). The correlation analysis, STRING database prediction, and RNA immunoprecipitation were utilized to identify the relationship between IGF2BP1 and PTBP1. Ectopic endometrial volume, weight, HE staining, and IGF2BP1 silencing were utilized to estimate the effects of IGF2BP1 in EMs model rats. qRT-PCR, CCK-8, 5-ethynyl-2'-deoxyuridine (EDU) labeling, Transwell assay, and flow cytometry were utilized to assess the effects of IGF2BP1/PTBP1 on the proliferation, migration, invasion, and apoptosis of ectopic endometrial stromal cells (eESCs). Furthermore, western blotting was employed to evaluate expressions of PCNA, VEGF, and E-cadherin in EMs rats and eESCs. RESULTS: The mRNA and protein levels of IGF2BP1 and PTBP1 in the ectopic and eutopic endometrium of EMs patients were significantly increased. RNA immunoprecipitation revealed a close interaction of IGF2BP1 with PTBP1. Additionally, the endometrial volume, weight, and histopathologic scores in rats were significantly reduced after IGF2BP1 silencing. IGF2BP1 silencing also decreased the expression of PCNA and VEGF, and increased E-cadherin expression in endometrial tissues of EMs rats. Moreover, IGF2BP1 silencing inhibited proliferation, migration, and invasion and promoted apoptosis through PTBP1 in eESCs. CONCLUSIONS: IGF2BP1 exhibits potential beneficial properties in the management of EMs by interacting with PTBP1, thereby highlighting IGF2BP1 as a promising therapeutic target for EMs.


Assuntos
Endometriose , Adulto , Animais , Feminino , Humanos , Ratos , Caderinas/metabolismo , Proliferação de Células , Endometriose/patologia , Endométrio/patologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/farmacologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
J Biophotonics ; 17(2): e202300343, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37909411

RESUMO

Repeated closed head injury (rCHI) is one of the most common brain injuries. Although extensive studies have focused on how to treat rCHI-induced brain injury and reduce the possibility of developing memory deficits, the prevention of rCHI-induced anxiety has received little research attention. The current study was designed to assess the effects of photobiomodulation (PBM) therapy in preventing anxiety following rCHI. The rCHI disease model was constructed by administering three repeated closed-head injuries within an interval 5 days. 2-min daily PBM therapy using an 808 nm continuous wave laser at 350 mW/cm2 on the scalp was implemented for 20 days. We found that PBM significantly ameliorated rCHII-induced anxiety-like behaviors, neuronal apoptosis, neuronal injury, promotes astrocyte/microglial polarization to anti-inflammatory phenotype, preserves mitochondrial fusion-related protein MFN2, attenuates the elevated mitochondrial fission-related protein DRP1, and mitigates neuronal senescence. We concluded that PBM therapy possesses great potential in preventing anxiety following rCHI.


Assuntos
Traumatismos Cranianos Fechados , Terapia com Luz de Baixa Intensidade , Humanos , Apoptose , Neurônios , Ansiedade/etiologia , Ansiedade/prevenção & controle
9.
ACS Omega ; 9(8): 8947-8953, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434805

RESUMO

The ignition of anthracite with arc plasma has not been applied due to its low chemical effect and volatile content in anthracite. The nonequilibrium plasma generated by a microwave-induced discharge has the ability to break branch chains and aromatic ring structures by kinetic effects, which has the potential for anthracite cracking and ignition. This work investigated anthracite cracking by microwave-induced discharges under an Ar/N2 atmosphere. Results showed that the maximum levels of CO production, total gas production, and total gas generation rate occur in 20% argon content due to an increase in the number of electrons and a decrease in the total electronic states excitation rate constant with an increase in the argon content. The total gas production in plasma cracking is larger than that by pyrolysis, indicating the crack of polycyclic aromatic hydrocarbon by plasma. In addition, we attempted anthracite combustion under an 80% N2 and 20% O2 atmosphere.

10.
J Orthop Surg Res ; 18(1): 294, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041549

RESUMO

BACKGROUND: To compare the biomechanical properties and stability, using a finite element model, of four fixation constructs used for the treatment of anterior column and posterior hemi-transverse (ACPHT) acetabular fractures under two physiological loading conditions (standing and sitting). METHODS: A finite element model simulating ACPHT acetabular fractures was created for four different scenarios: a suprapectineal plate combined with posterior column and infra-acetabular screws (SP-PS-IS); an infrapectineal plate combined with posterior column and infra-acetabular screws (IP-PS-IS); a special infrapectineal quadrilateral surface buttress plate (IQP); and a suprapectineal plate combined with a posterior column plate (SP-PP). Three-dimensional finite element stress analysis was performed on these models with a load of 700 N in standing and sitting positions. Biomechanical stress distributions and fracture displacements were analysed and compared between these fixation techniques. RESULTS: In models simulating the standing position, high displacements and stress distributions were observed at the infra-acetabulum regions. The degree of these fracture displacements was low in the IQP (0.078 mm), as compared to either the IP-PS-IS (0.079 mm) or the SP & PP (0.413 mm) fixation constructs. However, the IP-PS-IS fixation construct had the highest effective stiffness. In models simulating the sitting position, high fracture displacements and stress distributions were observed at the regions of the anterior and posterior columns. The degree of these fracture displacements was low in the SP-PS-IS (0.101 mm), as compared to the IP-PS-IS (0.109 mm) and the SP-PP (0.196 mm) fixation constructs. CONCLUSION: In both standing and sitting positions, the stability and stiffness index were comparable between the IQP, SP-PS-IS, and IP-PS-IS. These 3 fixation constructs had smaller fracture displacements than the SP-PP construct. The stress concentrations at the regions of quadrilateral surface and infra-acetabulum suggest that the buttressing fixation of quadrilateral plate was required for ACPHT fractures.


Assuntos
Fraturas do Quadril , Fraturas da Coluna Vertebral , Humanos , Fixação Interna de Fraturas/métodos , Análise de Elementos Finitos , Fenômenos Biomecânicos , Parafusos Ósseos
11.
Huan Jing Ke Xue ; 44(5): 3003-3016, 2023 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-37177972

RESUMO

Global warming and intensified human activities have led to regional climate instability with increasing frequency and the persistence of high-temperature climate events. Eco-environmental protection and socio-economic development have been faced with rigorous threats. Taking the monthly maximum temperatures from 1950 to 2019 as the basic data source, the spatial-temporal evolution characteristics of seasonal average maximum temperature (AMT) were discerned using the Mann-Kendall test and unary linear regression method in China from 1950 to 2019. Combined with linear correlation, partial linear correlation, and wavelet analysis, the correlation between seasonal AMT characteristics and atmospheric circulations was analyzed quantitatively. The results showed that:① the AMT in all seasons had a significant upward trend, with an increase of 1.21, 0.08, 1.81, and 0.25℃ in spring, summer, autumn, and winter, respectively. The abrupt change times of the AMT were concentrated in the 1990s to the early 21st century. ② In terms of spatial distribution, except for in summer, the average trend rates of AMT in other seasons increased gradually from south to north, although the increasing degrees were different. Among them, the AMT change rate in spring-winter was the fastest in northeast and northwest China. ③ There were complex correlations between the AMT of every season and atmospheric circulation factors, and the distribution of the interrelation energy varied significantly in different frequency domains. Specifically, the Pacific Decadal Oscillation had a significant negative correlation with AMT in summer. The North Atlantic Oscillation had an active effect on AMT changes in summer, autumn, and winter. The Arctic Oscillation had a significant positive driving effect on AMT in all seasons, and there were significant positive or negative influences on the short-or long-term changes of AMT in spring and summer due to the different EI Niño-Southern Oscillation years. These results could provide a theoretical basis and technical reference for China to formulate scientific and effective response plans of climate change.

12.
Mater Today Bio ; 20: 100616, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37025556

RESUMO

Diabetic wounds always have puzzled patients and caused serious social problems. Due to the lack of local blood vessels, severe hypoxia is generated in the defect area, which is an essential reason for the difficulty of wound healing. We have constructed a photocatalytic oxygen evolution and antibacterial biomimetic repair membrane to solve the problems of wound repair. A scanning electron microscope and transmission electron microscope characterized the biomimetic repair membrane. The oxygen evolution of the biomimetic membrane was tested by an oxygen meter. The excellent antibacterial performance of the biomimetic repair membrane was also verified by co-culture with Staphylococcus aureus and Escherichia coli. It was confirmed that the expression of collagen and HIF1-α in fibroblasts was significantly increased in vitro. And the mitochondrial activity of the vascular and nerve was increased considerably. In vivo, the healing time of diabetes wounds treated with the biomimetic repair membrane was significantly reduced, the collagen and the number of pores were increased considerably, and vascular regeneration was enhanced. The biomimetic repair membrane has an excellent performance in photocatalytic oxygen evolution and antibacterial and can significantly promote the repair of diabetes wounds. This will provide a promising treatment for diabetes wound repair.

14.
Front Cardiovasc Med ; 10: 1301412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250032

RESUMO

Purpose: To evaluate a noval bilateral asymmetric single-rivet occluder with reserved interatrial septal puncture area for treating patent foramen ovale (PFO). Materials and methods: The study established a pig model of patent foramen ovale (PFO) by puncturing the oval fossa and then performing high-pressure balloon dilation. A specially designed bilateral asymmetric occluder for the reserved interatrial septal puncture area was then. used to close the PFO through catheter-based intervention. The pigs were kept for 3 months before undergoing a second catheter-based intervention, involving interatrial septal puncture using a newly developed occluder in the reserved interatrial septal puncture area. During 6 months, the experimental pigs underwent assessment using digital subtraction angiography (DSA), echocardiography, and histological evaluation. Results: A patent foramen ovale (PFO) model was successfully established in 6 pigs using the puncture atrial septum high-pressure balloon dilation method. The diameter of the unclosed PFO was measured (3.56 ± 0.25 mm). Using the newly developed occluder device, all 6 pigs with unclosed PFO underwent successful catheter-based closure surgeries, with intraoperative and postoperative transesophageal echocardiography showing excellent device positioning and complete closure without residual shunting. After 3 months of implantation, the catheter-based interatrial septal puncture was performed through the reserved interatrial septal puncture area, and all procedures were successful. Immediately following euthanasia, a histological examination revealed intact and undamaged occluder devices with visible puncture holes in the reserved interatrial septal puncture area. No fracture of the nitinol wire was observed, and the surface of the occluder device showed coverage of endothelial and connective tissues. Utilizing a bilateral asymmetric single-rivet occluder device implanted through the reserved interatrial septal puncture area has proven effective in closing PFO. After implantation, the occluder device allows subsequent interatrial septal puncture procedures through the reserved area. Conclusion: The novel occluder device demonstrated excellent closure performance, biocompatibility, and puncturability in the experiment. This indicates the feasibility of conducting further catheter-based interventions on the interatrial septum.

15.
Adv Healthc Mater ; 12(3): e2201349, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36325633

RESUMO

Repairing infected bone defects is a challenge in the field of orthopedics because of the limited self-healing capacity of bone tissue and the susceptibility of refractory materials to bacterial activity. Innervation is the initiating factor for bone regeneration and plays a key regulatory role in subsequent vascularization, ossification, and mineralization processes. Infection leads to necrosis of local nerve fibers, impeding the repair of infected bone defects. Herein, a biomaterial that can induce skeletal-associated neural network reconstruction and bone regeneration with high antibacterial activity is proposed for the treatment of infected bone defects. A photosensitive conductive hydrogel is prepared by incorporating magnesium-modified black phosphorus (BP@Mg) into gelatin methacrylate (GelMA). The near-infrared irradiation-based photothermal and photodynamic treatment of black phosphorus endows it with strong antibacterial activity, improving the inflammatory microenvironment and reducing bacteria-induced bone tissue damage. The conductive nanosheets and bioactive ions released from BP@Mg synergistically improve the migration and secretion of Schwann cells, promote neurite outgrowth, and facilitate innerved bone regeneration. In an infected skull defect model, the GelMA-BP@Mg hydrogel shows efficient antibacterial activity and promotes bone and CGRP+ nerve fiber regeneration. The phototherapy conductive hydrogel provides a novel strategy based on skeletal-associated innervation for infected bone defect repair.


Assuntos
Regeneração Óssea , Hidrogéis , Antibacterianos/farmacologia , Gelatina/farmacologia , Hidrogéis/farmacologia , Osteogênese , Fósforo/farmacologia , Animais
16.
Adv Healthc Mater ; 12(12): e2203027, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36652677

RESUMO

To treat bone defects, repairing the nerve-rich periosteum is critical for repairing the local electric field. In this study, an endogenous electric field is coupled with 2D black phosphorus electroactive periosteum to explore its role in promoting bone regeneration through nerves. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to characterize the electrically active biomimetic periosteum. Here, the in vitro effects exerted by the electrically active periosteum on the transformation of Schwann cells into the repair phenotype, axon initial segment (AIS) and dense core vesicle (DCV) of sensory neurons, and bone marrow mesenchymal stem cells are assessed using SEM, immunofluorescence, RNA-sequencing, and calcium ion probes. The electrically active periosteum stimulates Schwann cells into a neuroprotective phenotype via the Fanconi anemia pathway, enhances the AIS effect of sensory neurons, regulates DCV transport, and releases neurotransmitters, promoting the osteogenic transformation of bone marrow mesenchymal stem cells. Microcomputed tomography and other in vivo techniques are used to study the effects of the electrically active periosteum on bone regeneration. The results show that the electrically active periosteum promotes nerve-induced osteogenic repair, providing a potential clinical strategy for bone regeneration.


Assuntos
Anemia de Fanconi , Periósteo , Humanos , Periósteo/metabolismo , Alicerces Teciduais , Engenharia Tecidual/métodos , Biomimética , Anemia de Fanconi/metabolismo , Microtomografia por Raio-X , Regeneração Óssea/fisiologia , Osteogênese , Transdução de Sinais
17.
Nat Biomed Eng ; 7(1): 38-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36550307

RESUMO

The microbiome modulates host immunity and aids the maintenance of tolerance in the gut, where microbial and food-derived antigens are abundant. Yet modern dietary factors and the excessive use of antibiotics have contributed to the rising incidence of food allergies, inflammatory bowel disease and other non-communicable chronic diseases associated with the depletion of beneficial taxa, including butyrate-producing Clostridia. Here we show that intragastrically delivered neutral and negatively charged polymeric micelles releasing butyrate in different regions of the intestinal tract restore barrier-protective responses in mouse models of colitis and of peanut allergy. Treatment with the butyrate-releasing micelles increased the abundance of butyrate-producing taxa in Clostridium cluster XIVa, protected mice from an anaphylactic reaction to a peanut challenge and reduced disease severity in a T-cell-transfer model of colitis. By restoring microbial and mucosal homoeostasis, butyrate-releasing micelles may function as an antigen-agnostic approach for the treatment of allergic and inflammatory diseases.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Hipersensibilidade a Amendoim , Camundongos , Animais , Micelas , Butiratos
18.
Polymers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36365559

RESUMO

The musculoskeletal system plays a critical role in providing the physical scaffold and movement to the mammalian body. Musculoskeletal disorders severely affect mobility and quality of life and pose a heavy burden to society. This new field of musculoskeletal tissue engineering has great potential as an alternative approach to treating large musculoskeletal defects. Natural and synthetic polymers are widely used in musculoskeletal tissue engineering owing to their good biocompatibility and biodegradability. Even more promising is the use of natural and synthetic polymer composites, as well as the combination of polymers and inorganic materials, to repair musculoskeletal tissue. Therefore, this review summarizes the progress of polymer-based scaffolds for applications of musculoskeletal tissue engineering and briefly discusses the challenges and future perspectives.

19.
Ann Palliat Med ; 11(10): 3203-3212, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36367007

RESUMO

BACKGROUND: Postmenopausal women are one of the most vulnerable groups to osteoporosis. Romosozumab is a newly monoclonal drug that inhibits the activity of sclerostin. Since it has been on the market for only 3 years, there is a lack of systematic analysis on postmenopausal women and the efficacy is not clear. In this study, we compared randomized controlled trials to assess the effects of blosozumab versus placebo in perimenopausal and postmenopausal women. METHODS: This meta-analysis has been registered in the PROSPERO registry (number CRD42020145839). The PubMed, Cochrane Library, ClinicalKey, and Embase databases were searched from inception date to July 01, 2021. We used the keywords "osteoporosis", "decreased bone mass", and "blosozumab" to retrieve studies on the relationship between blosozumab and osteoporosis in each database. The inclusion criteria were: (I) randomized controlled trials (RCTs) comparing the treatment of osteoporosis with blosozumab and a placebo or without treatment, (II) studies on postmenopausal women aged over 50 years, and (III) studies providing bone mineral density data. The quality of all randomized controlled trials included in this study was independently assessed by two researchers according to the Cochrane risk manual and was divided into high, medium and low quality. The main results analyzed were bone mineral density (BMD) and T-score. Our results mainly include BMD and procollagen type I N-terminal propeptide (P1NP), C-terminal telopeptide of type I collagen (CTX), bone-specific alkaline phosphatase (BSAP), and osteocalcin (OC). RESULTS: Three RCTs with 105 patients were selected from 157 retrieved articles. Due to high heterogeneity [BMD: Tau2=2.79; Chi2=11.70, degrees of freedom (df) =1 (P=0.0006); I2=91%], we could not perform statistical analysis of BMD. The results of BMD were then evaluated systematically. Three RCT studies were included in the evaluation. Compared with that of the placebo, blosozumab increased levels of the BMD biomarker osteocalcin [mean deviation (MD) 12.55; 95% confidence interval (CI), 8.18, 16.91; P<0.00001]. None of the 3 RCTs presented a risk of bias during the meta-analysis. CONCLUSIONS: The results suggested that blosozumab could be used as a target drug to improve BMD in postmenopausal women. This will provide a reference for the clinical treatment of postmenopausal women with osteoporosis.


Assuntos
Conservadores da Densidade Óssea , Osteoporose Pós-Menopausa , Osteoporose , Feminino , Humanos , Pessoa de Meia-Idade , Conservadores da Densidade Óssea/uso terapêutico , Osteocalcina/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose Pós-Menopausa/tratamento farmacológico , Pós-Menopausa , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Mater Today Bio ; 16: 100434, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36186848

RESUMO

Repairing critical bone defects is a complex problem in the clinic. The periosteum rich in nerve plays a vital role in initiating and regulating bone regeneration. However, current studies have paid little attention to repairing nerves in the periosteum to promote bone regeneration. Thus, it is essential to construct bionic periosteum with the targeted injured nerves in the periosteum. We coupled phosphatidylserine (PS) targeted aptamers with repair Schwann cell exosomes to construct exosome@aptamer (EA). Then through PEI, EA was successfully built on the surface of the electrospun fiber, which was PCL@PEI@exosome@aptamer (PPEA). Through SEM, TEM, and other technologies, PPEA was characterized. Experiments prove in vivo and in vitro that it has an excellent repair effect on damaged nerves and regeneration of vascular and bones. In vivo, we confirmed that biomimetic periosteum has an apparent ability to promote nerve and bone regeneration by using Microcomputer tomography, hematoxylin-eosin, Masson, and Immunofluorescence. In vitro, we used Immunofluorescence, Real-Time Quantitative PCR, Alkaline phosphatase staining, and other tests to confirm that it has central nerve, blood vessel, and bone regeneration ability. The PPEA biomimetic periosteum has apparent neurogenic, angiogenic, and osteogenic effects. The PPEA biomimetic periosteum will provide a promising method for treating bone defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA