Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(2): 2012-2026, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165274

RESUMO

Liver fibrosis is the critical stage in the development of chronic liver disease (CLD), from simple injury to irreversible cirrhosis. Timely detection and intervention of liver fibrosis are crucial for preventing CLD from progressing into a fatal condition. Herein, we developed iron oxide (Fe3O4) nanoparticles (IONPs) and ferulic acid (FA) coencapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), followed by surface modification with cRGD peptides (cRGD-PLGA/IOFA) for integrin-targeted clinical magnetic resonance imaging (MRI)-traceable treatment of liver fibrosis. The cRGD peptide linked on the surface of the PLGA/IOFA NPs could specifically bind to the overexpressed integrin αvß3 on activated hepatic stellate cells (HSCs) in the fibrotic liver, enabling the high-sensitive clinical MR imaging (3 T) and precise staging of liver fibrosis. The FA encapsulated in cRGD-PLGA/IOFA showed excellent efficacy in reducing oxidative stress and inhibiting the activation of HSCs through the transforming growth factor-ß (TGF-ß)/Smad pathway. Notably, the IONPs encapsulated in cRGD-PLGA/IOFA NPs could alleviate liver fibrosis by regulating hepatic macrophages through the NF-κB pathway, lowering the proportion of Ly6Chigh/CD86+, and degrading collagen fibers. The FA and IONPs in the cRGD-PLGA/IOFA produced a synergistic enhancement effect on collagen degradation, which was more effective than the IONPs treatment alone. This study demonstrates that cRGD-PLGA/IOFA NPs could effectively relieve liver fibrosis by acting on macrophages and HSCs and provide a new strategy for the clinical MRI-traceable treatment of liver fibrosis.


Assuntos
Nanopartículas , Medicina de Precisão , Humanos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Nanopartículas/uso terapêutico , Colágeno , Fígado/diagnóstico por imagem , Fígado/patologia
2.
RSC Adv ; 9(46): 26712-26717, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35528550

RESUMO

A photoelectrochemical (PEC) method based on the etching reaction of F ions on the surface of TiO2 nanorod arrays (TNRs) was proposed for the high sensitivity and selectivity detection of F ions. With the increase of F ion concentration, the surface etching reaction on TNR becomes more intense, resulting in the increased number of surface active sites, the reduction of electron transfer resistance, and the increase of photocurrent density. The prepared TNRs as a PEC probe exhibits a good linear relationship between photocurrent increment and the logarithm of F ion concentration in the range from 0.05 to 1000 nM with an ultra-trace detection limit of 0.03 nM for F ion detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA