Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Public Health ; 21(1): 1429, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34281505

RESUMO

BACKGROUND: Liquid discharges from hospitals (effluents) threaten the environment and are now a central concern of all stakeholders in the health system and those in the protection of the environment. The management of effluents is a major problem in developing countries. The objective of this study was to assess the quality of effluent management at the level of university hospital centers (CHU) in the Littoral region in Benin. METHODS: It was a cross-sectional, descriptive, evaluative study that took place in 2020 to assess the "structure", "process" and "results" components according to standard thresholds (Bad: < 60%; Acceptable: [60-80% [and Good: ≥ 80%). RESULTS: In all the CHUs, all the components, as well as the overall quality of the management of hospital effluents, had a score between 0 and 60%, with an assessment deemed bad. The poor quality of the process highlighted the non-compliance with standards relating to the management of hospital liquid discharges. Several factors linked to the "structure", "process" and "results" components at the same time explain this poor management of university hospitals effluents. CONCLUSION: These effluents discharged without prior treatment into wastewater could constitute a source of dissemination of potentially pathogenic microorganisms. It is therefore important to develop methods for treating these effluents before they are released into the natural environment.


Assuntos
Águas Residuárias , Benin , Estudos Transversais , Hospitais Universitários , Humanos
2.
J Environ Manage ; 249: 109427, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450198

RESUMO

Industrialization and accelerated population growth have created a huge amount of sewage sludge. Many studies have reported the sewage sludge as a sink of major and trace elements, but less is known about their geochemical fractionations. In order to assess the mobility, the distribution, bioavailability, and toxicity of those elements in sludge, we collected the sewage sludge samples from all the seven wastewater treatment plants in Xiamen City, China. Results revealed a strong spatial variation and the occurrence of 48 elements with concentrations ranging from 1.00×10-2 mg kg-1 (Re) to 9.03×101 g kg-1 (Fe) on the basis of dry sludge weight. Sequential extraction procedure showed that residual and oxidizable fractions were the main geochemical fractions of most studied elements. However, Ca, Mn, Sr, and Ni were mainly bound to acid-exchangeable fractions, while Fe, Zn, Cd, Cr, Co, and V were mainly distributed in the reducible fractions. The contamination factor and risk assessment code indicated that Ni, Cu, Zn, Cd, Cr, Co, Sr, Ca, Mn, Mo, Re, and W were highly mobile with less retention time and exerted high environmental risks through sludge land application. The sludge disposal strategy should consider not only the total concentrations of a broad range of elements but also their bioavailability.


Assuntos
Metais Pesados , Oligoelementos , China , Cidades , Medição de Risco , Esgotos , Eliminação de Resíduos Líquidos
3.
Bull Environ Contam Toxicol ; 103(1): 23-27, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30666386

RESUMO

Polybrominated diphenyl ethers (PBDEs) derived from e-waste dismantling, tend to easily bioaccumulate in vegetables. In this study, an optimized sample pretreatment method based on graphene oxide (GO) dispersed acid silica gel was used to determine PBDEs levels in vegetables. The recovery efficiency of the optimized method ranged between 90.3%-107.5% with the detection limit (LOD) being within 0.17-1.8 ng g-1. Vegetable samples were grown nearby an e-waste recycling plant in Nanjing, China, and analyzed using the optimized method. The concentrations of ΣPBDEs in the samples ranged from 12.1 to 20.1 ng g-1. This study developed an optimized sample pretreatment method to determine PBDEs in vegetables nearby e-waste contaminated sites and provides insights on the potential risks derived from e-waste dismantling to the surrounding environment.


Assuntos
Resíduo Eletrônico/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Grafite/química , Éteres Difenil Halogenados/análise , Verduras/química , China , Óxidos , Plantas , Reciclagem , Sílica Gel
4.
J Environ Manage ; 206: 93-102, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-29059576

RESUMO

Sulfamethoxazole (SMX) is a common medicine prescribed to treat infections. Due to vast use, SMX has been detected in different parts of the world. Hence, it has become a high risk because of its long term persistence with high biological activity in the ecosystem. Therefore, it is necessary to understand the mechanism of SMX degradation in different genus of bacteria, which is presently unclear. In the present study, degradation of 5 mg L-1 SMX was studied in three isolated pure bacterial cultures, Ochrobactrum sp. SMX-PM1-SA1, Labrys sp. SMX-W1-SC11 and Gordonia sp. SMX-W2-SCD14 and results showed up to 45.2%, 62.2% and 51.4% degradation, respectively within 288 h. Additionally, strain SA1 and strain SCD14 showed up to 66.2% and 69.2% of 4-aminophenol degradation at an initial concentration of 5 mg L-1 within 216 h whereas Labrys sp. SMX-W1-SC11 completely degraded 4-aminophenol at the same concentration within 120 h. Moreover, all three pure bacteria also completely degraded 3-amino-5-methylisoxazole at initial concentration of 4 mg L-1 within 120 h. Furthermore, gas chromatography-mass spectrometry and quadrupole time-of-flight mass spectrometry analysis results revealed that 3-amino-5-methylisoxazole, 4-aminophenol and hydroquinone were the three main by-products of SMX catabolism. In addition, cell free extracts of both Labrys sp. SMX-W1-SC11 and Gordonia sp. SMX-W2-SCD14 showed hydroquinone dioxygenase activity. Besides, all three bacterial strains showed resistance to different heavy metals. Moreover, all three pure bacterial cultures also showed positive chemotactic response toward 3-amino-5-methylisoxazole and hydroquinone based on the drop plate assay. The results of this study recommend these microorganisms for bioremediation of SMX contaminated sites.


Assuntos
Bactérias , Biodegradação Ambiental , Sulfametoxazol , Metais Pesados
5.
Environ Monit Assess ; 189(12): 625, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29124371

RESUMO

Nowadays, sewage sludge and water bodies are subjected to heavy pollution due to rapid population growth and urbanization. Heavy metal pollution represents one of the main challenges threatening our environment and the ecosystem. The present work aims to evaluate the contamination state of the sewage sludge and lake sediments in the Republic of Benin. Twenty metallic elements including 15 rare earth elements (Eu, Sb, Cs, Nd, Pr, Gd, La, Ce, Tb, Sm, Dy, Ho, Eu, Yb, and Lu) and five precious elements (Ag, Au, Pd, Pt, and Ru) were investigated using inductive plasma-mass spectrometry. Results showed broad range concentrations of the elements. Ce, La, and Nd were present in both sediments and sewage sludge at concentrations ranging 5.80-41.30 mg/kg dry matter (DM), 3.23-15.60 mg/kg DM, and 2.74-19.26 mg/kg DM, respectively. Pr, Sm, Gd, Tb, Dy, Eu, Er, Yb, Cs, Ho, and Tm concentrations were lower (0.02-5.94 mg/kg DM). Among precious elements, Ag was detected at the highest concentration in all sites (0.43-4.72 mg/kg DM), followed by Pd (0.20-0.57 mg/kg DM) and Au (0.01-0.57 mg/kg DM). Ru and Pt concentrations were < 0.20 mg/kg DM in all samples. Pollution indices and enrichment factor indicated a strong to severe enrichment of the elements, mainly Ce and precious elements in both sediments and sewage sludge. This revealed a growing anthropogenic input which was also implied by principal component analysis. The evaluation of pollution loading index (PLI) indicated a moderate to strong contamination (0.12 ≤ PLI ≤ 0.58; 37 ≤ PLI ≤ 114, respectively, for rare earth elements and precious elements), while the degree of contamination indicated a moderate polymetallic contamination for rare earth elements and significant contamination for precious elements.


Assuntos
Monitoramento Ambiental , Metais Terras Raras/análise , Esgotos/química , Poluentes Químicos da Água/análise , Benin , Ecossistema , Sedimentos Geológicos/química , Lagos/análise , Lagos/química , Espectrometria de Massas/métodos , Metais Pesados/análise , Esgotos/análise
6.
J Environ Manage ; 166: 341-7, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26520041

RESUMO

The applicability and performance of a new generation of biodegradable chelator, N, N-Bis(carboxymethyl) glutamic acid (GLDA), for extracting heavy metals from sewage sludge was carried out and compared with citric acid (CA). Targeted metals included Cd, Co, Cu, Zn, Ni and Cr, and their contents in the raw sludge were 63.1, 73.4, 1103.2, 2060.3, 483.9 and 604.1 mg kg(-1) (dry sludge basis), respectively. Metals were divided into six fractions including water soluble, exchangeable, carbonates bound, Fe-Mn bound, organic matters bound and residual fraction via chemical fractionation. Washing results showed that in general GLDA exhibited better performance compared with CA, with removal efficiency of 83.9, 87.3, 81.2, 85.6, 89.3 and 90.2% for Cd, Co, Cu, Zn, Ni and Cr, respectively at equilibrium pH = 3.3. Residual metals were better stabilized in the GLAD-washed sludge than in the CA-washed sludge, and were mostly tightly bonded to the residual fraction. Furthermore, CA promoted phosphorus (P) release while GLDA had an opposite effect and tended to retain P within sludge, which could be beneficial for further application in agricultural use. Findings from this study suggested that GLDA could be a potential replacement for refractory and less environmentally-friendly chelators in the extraction of metals from sludge.


Assuntos
Quelantes/química , Ácido Cítrico/química , Glutamatos/química , Glicina/análogos & derivados , Metais Pesados/química , Esgotos/química , Fracionamento Químico , Glicina/química , Metais Pesados/análise , Gerenciamento de Resíduos/métodos
7.
Chemosphere ; 238: 124627, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31548173

RESUMO

Nitrogen contamination remains a severe environmental problem and a major threat to sustainable development worldwide. A systematic analysis of the literature indicates that the partial nitritation-anammox (PN/AMX) process is still actively studied as a viable option for energy-efficient and feasible technology for the sustainable treatment of N- rich wastewaters, since its initial discovery in 1990. Notably, the mainstream PN/AMX process application remains the most challenging bottleneck in AMX technology and fascinates the world's attention in AMX studies. This paper discusses the recent trends and developments of PN/AMX research and analyzes the results of recent years of research on the PN/AMX from lab-to full-scale applications. The findings would deeply improve our understanding of the major challenges under mainstream conditions and next-stage research on the PN/AMX process. A great deal of efforts has been made in the process engineering, PN/AMX bacteria populations, predictive modeling, and the full-scale implementations during the past 22 years. A series of new and excellent experimental findings at lab, pilot and full-scale levels including good nitrogen removal performance even under low temperature (15-10 °C) around the world were achieved. To date, pilot- and full-scale PN/AMX have been successfully used to treat different types of industrial sewage, including black wastewater, sludge digester liquids, landfill leachate, monosodium glutamate wastewater, etc. Supplementing the qualitative analysis, this review also provides a quantitative bibliometrics study and evaluates global perspectives on PN/AMX research published during the past 22 years. Finally, general trends in the development of PN/AMX research are summarized with the aim of conveying potential future trajectories. The current review offers a valuable orientation and global overview for scientists, engineers, readers and decision makers presently focusing on PN/AMX processes.


Assuntos
Compostos de Amônio/análise , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Esgotos/química , Poluentes Químicos da Água/química , Bibliometria , Nitrogênio/análise , Oxirredução , Esgotos/microbiologia , Glutamato de Sódio/análise
8.
J Hazard Mater ; 393: 122388, 2020 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-32120218

RESUMO

Remediation of organochlorine pesticides (OCPs)-contaminated soils is urgently required especially in China. Surfactants have emerged as reliable and efficient co-solvent for the treatment of hardly soluble organic pollutants in contaminated soil. Here, we report the use of TritonX-100 (TX-100) in advanced oxidation under electrokinetic technology (EK) for OCPs removal from a historically contaminated soil from a former pharmaceutical industrial wasteland. Result shows that TX-100 (10%) played a key role in soil remediation. In effect, after a treatment period of 15 days, pollutants washed ranged from 50.68% (4,4'-DDT) to 76.07% (HCB), when TX-100 was used as the electrolyte (EK-TX-100). A simple advanced oxidation of the soil using sodium persulfate (PS) under EK approach (EK-PS) was limited to achieve good removal efficiency of the pollutants; as the result of OCPs' hardly dissolvable nature. The achieved removal efficiency were comprised between 22.62% (2,4-DDT) and 55.78% (1,2,4,5-TCB). With the application of TX-100 as co-solvent (EK-TX-100/PS), the pollutants removal efficiency significantly improved (p < 0.05). The treatment efficiency was shifted and up to 88.05% (1,2,4-TCB) was achieved, while the lowest removal efficiency was 56.36% (4,4'-DDE). We come to the conclusion that the use of TX-100-enhanced advanced oxidation (EK-TX-100/PS) as a reliable treatment for remediating organochlorine contaminated soil.

9.
Environ Sci Pollut Res Int ; 25(29): 29006-29016, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30109684

RESUMO

Limited information about the sludge quality is a major constraint for its usage and proper disposal. This study investigated the occurrence of 49 elements in sludge from 11 wastewater treatment plants (WWTPs) in Chongqing and Xiamen cities of China. The concentration of 46-detected elements ranged from 16.2 µg kg-1 (Pt) to 55.0 g kg-1 (Al) on dry solid basis in the sludge. The enrichment factor of most of the elements was > 1.5, indicating their possible anthropogenic origin. The precious metals had considerably higher enrichment factor ranging from 56.3 to 200,000. Principal component analysis clustered the samples from Chongqing and Xiamen separately to suggest strong spatial variations. Contamination factor, pollution loading index, and integrated pollution degree were calculated to evaluate the elemental pollution risk. The pollution loading index indicated unpolluted to highly polluted levels of the elements in the sludge. In addition, results from the ecotoxicological risk index showed an individual low to very high ecotoxicological risk posed by eight metal(loid)s (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) in the WWTPs.


Assuntos
Ecotoxicologia/métodos , Esgotos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , China , Cidades , Metais/análise , Metais/toxicidade , Metais Pesados/análise , Metais Pesados/toxicidade , Análise de Componente Principal , Medição de Risco/métodos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos
10.
Sci Total Environ ; 581-582: 773-781, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073642

RESUMO

We evaluate the long-term performance of a vegetated drainage ditch (VDD) treating domestic sewage with respect to heavy metal/metalloid (HM/M) accumulation in sediments, plants and water. VDD sediment contained significantly higher macro and trace elements compared to an agricultural ditch (AD) sediment. However, concentrations of HM/Ms in VDD sediment were below the ranges considered toxic to plants. Most HM/Ms were efficiently removed in the VDD, whereby removal efficiencies varied between 11% for Al and 89% for K. Accumulation of HM/Ms varied among species and plant parts, although sequestration by plants represents only a small proportion (<1%) of the inflow load. Accumulation of Al, As, Cd, Pb, Cr, Fe and Ni in VDD plants were mostly distributed in the roots, indicating an exclusive strategy for metal tolerance. The opposite was found for Zn, Cu, K, Ca, P, K, Na, N and Mg, which were accumulated either in the stems or leaves. Overall, concentrations of metals in sediment showed significant positive correlations with those in ditch plants. None of the studied species were identified as metal hyper-accumulators (i.e. >10,000mgkg-1 of Zn or Mn). Nevertheless, the high translocation factor (TF) values for Mn, Ni, Cu, Zn, Na, Mg, P, K and Ca in the ditch plants make them suitable for phytoextraction from water/soil, while the low TF values for Pb, Cd, As, Fe, Cr and Al make them suitable for their phytostabilization.


Assuntos
Sedimentos Geológicos/química , Metais Pesados/análise , Esgotos/química , Biodegradação Ambiental , China , Recuperação e Remediação Ambiental , Plantas/química , Solo , Água/química
11.
J Hazard Mater ; 321: 47-53, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27607932

RESUMO

Lab scale and single stage high solid anaerobic digestion of sewage sludge spiked with freshly synthesized nanoscale zero valent iron (nZVI) and commercial iron powder (IP) under mesophilic condition (37±1°C) was performed. The effects of both additives on methane yield, and pharmaceutical and personal care product (PPCP) removal were investigated. Results showed that methane yield was increased by 25.2% and 40.8% in the presence of nZVI (0.1%) and IP (1.6%), respectively. Removal efficiencies of chemical oxygen demand were 54.4% and 66.2% in the presence of nZVI and IP, respectively, which were higher compared to the control group (44.6%). In addition, most PPCPs could be partly or completely removed during the anaerobic digestion process. The application of nZVI and IP showed positive impact on the removal of chlorinated PPCPs (p<0.05), but did not show significant impact on other PPCPs (p>0.05). Our finding suggests that the application of nZVI and IP in anaerobic digestion could be a promising way to enhance methane yield but had less improvement on PPCP degradation.


Assuntos
Cosméticos/análise , Ferro/química , Metano/biossíntese , Nanopartículas/química , Preparações Farmacêuticas/análise , Esgotos , Poluentes Químicos da Água/análise , Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Pós , Esgotos/química , Esgotos/microbiologia , Purificação da Água/métodos
12.
Sci Rep ; 7(1): 5698, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720767

RESUMO

The limited information about the sludge quality has made its management a top environmental challenge. In the present study, occurrence and the spatiotemporal variations of 52 inorganic elements were investigated in the sludge samples from three wastewater treatment plants (WWTPs) in Xiamen city, China. The results showed, the occurrence of 49 elements with the concentrations in the range of >125-53500 mg kg-1 dry sludge (DS) for commonly used industrial metals, 1.22-14.0 mg kg-1 DS for precious metals, and 1.12-439.0 mg kg-1 DS for rare earth elements. The geo-accumulation studies indicated a moderate to high levels of buildup of some elements in the sewage sludge. Principal components analysis (PCA) indicated strong spatial and weak temporal variations in the concentrations of the elements. Therefore, the sludge disposal operations, based on the element concentrations, geoaccumulation and economic potential are suggested for each WWTP. Sludge from W1 and W2 were found suitable for agricultural usage, while that from W3 showed a higher economic potential for the recovery of precious metals. This study concludes that a comprehensive analysis of the elements in the sewage sludge could provide critical information for the disposal and management of the sludge.

13.
Water Res ; 88: 897-903, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26613183

RESUMO

Anaerobic digestion (AD) is one of the most widely used processes to stabilize waste sewage sludge and produce biogas renewable energy. In this study, two different iron nanoparticles [nanoscale zero-valent iron (nZVI) and magnetite (Fe3O4)] were used in the mesophilic AD processes (37 ± 1 °C) to improve biogas production. In addition, changes of heavy metal (Cd, Co, Cu, Zn, Ni and Cr) speciation during AD of sludge with and without iron nanoparticles have been investigated. Concentrations of metals in the initial sludge were as follows: 63.1, 73.4, 1102.2, 2060.3, 483.9 and 604.1 mg kg(-1) (dry sludge basis) for Cd, Co, Cu, Zn, Ni and Cr, respectively. Sequential fractionation showed that metals were predominantly bonded to organic matter and carbonates in the initial sludge. Compared with AD without iron nanoparticles, the application of iron nanoparticles (at dose of 0.5% in this study) showed positive impact not only on biogas production, but also on improvement of metals stabilization in the digestate. Metals were found concentrated in Fe-Mn bound and residual fractions and little was accumulated in the liquid digestate and most mobile fractions of solid digestate (water soluble, exchangeable and carbonates bound). Therefore, iron nanoparticles when properly used, could improve not only biogas yield, but also regulate and control the mobilization of metals during AD process. However, our study also observed that iron nanoparticles could promote the immobilization of phosphorus within the sludge during AD, and more research is needed to fully address the mechanism behind this phenomenon and the impact on future phosphorus reuse.


Assuntos
Óxido Ferroso-Férrico/química , Ferro/química , Nanopartículas Metálicas/química , Metais Pesados/metabolismo , Esgotos/análise , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Fracionamento Químico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA