Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1015, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823175

RESUMO

The origin of the charge density wave phases in the kagome metal compound AV3Sb5 is still under great scrutiny. Here, we combine diffuse and inelastic x-ray scattering to identify a 3-dimensional precursor of the charge order at the L point that condenses into a CDW through a first order phase transition. The quasi-elastic critical scattering indicates that the dominant contribution to the diffuse precursor is the elastic central peak without phonon softening. However, the inelastic spectra show a small broadening of the Einstein-type phonon mode on approaching TCDW. Our results point to the situation where the Fermi surface instability at the L point is of order-disorder type with critical growth of quasi-static domains. The experimental data indicate that the CDW consists on an alternating Star of David and trihexagonal distortions and its dynamics goes beyond the classical weak-coupling scenario and is discussed within strong-electron phonon coupling and non-adiabatic models.

2.
Nat Commun ; 14(1): 6646, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863907

RESUMO

Geometrically frustrated kagome lattices are raising as novel platforms to engineer correlated topological electron flat bands that are prominent to electronic instabilities. Here, we demonstrate a phonon softening at the kz = π plane in ScV6Sn6. The low energy longitudinal phonon collapses at ~98 K and q = [Formula: see text] due to the electron-phonon interaction, without the emergence of long-range charge order which sets in at a different propagation vector qCDW = [Formula: see text]. Theoretical calculations corroborate the experimental finding to indicate that the leading instability is located at [Formula: see text] of a rather flat mode. We relate the phonon renormalization to the orbital-resolved susceptibility of the trigonal Sn atoms and explain the approximately flat phonon dispersion. Our data report the first example of the collapse of a kagome bosonic mode and promote the 166 compounds of kagomes as primary candidates to explore correlated flat phonon-topological flat electron physics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA