Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
BMC Microbiol ; 24(1): 92, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500045

RESUMO

BACKGROUND: The soil biota consists of a complex assembly of microbial communities and other organisms that vary significantly across farming systems, impacting soil health and plant productivity. Despite its importance, there has been limited exploration of how different cropping systems influence soil and plant root microbiomes. In this study, we investigated soil physicochemical properties, along with soil and maize-root microbiomes, in an agroecological cereal-legume companion cropping system known as push-pull technology (PPT). This system has been used in agriculture for over two decades for insect-pest management, soil health improvement, and weed control in sub-Saharan Africa. We compared the results with those obtained from maize-monoculture (Mono) cropping system. RESULTS: The PPT cropping system changed the composition and diversity of soil and maize-root microbial communities, and led to notable improvements in soil physicochemical characteristics compared to that of the Mono cropping system. Distinct bacterial and fungal genera played a crucial role in influencing the variation in microbial diversity within these cropping systems. The relative abundance of fungal genera Trichoderma, Mortierella, and Bionectria and bacterial genera Streptomyces, RB41, and Nitrospira were more enriched in PPT. These microbial communities are associated with essential ecosystem services such as plant protection, decomposition, carbon utilization, bioinsecticides production, nitrogen fixation, nematode suppression, phytohormone production, and bioremediation. Conversely, pathogenic associated bacterial genus including Bryobacter were more enriched in Mono-root. Additionally, the Mono system exhibited a high relative abundance of fungal genera such as Gibberella, Neocosmospora, and Aspergillus, which are linked to plant diseases and food contamination. Significant differences were observed in the relative abundance of the inferred metabiome functional protein pathways including syringate degradation, L-methionine biosynthesis I, and inosine 5'-phosphate degradation. CONCLUSION: Push-pull cropping system positively influences soil and maize-root microbiomes and enhances soil physicochemical properties. This highlights its potential for agricultural and environmental sustainability. These findings contribute to our understanding of the diverse ecosystem services offered by this cropping system where it is practiced regarding the system's resilience and functional redundancy. Future research should focus on whether PPT affects the soil and maize-root microbial communities through the release of plant metabolites from the intercrop root exudates or through the alteration of the soil's nutritional status, which affects microbial enzymatic activities.


Assuntos
Microbiota , Resiliência Psicológica , Solo/química , Zea mays , Fungos/genética , Agricultura/métodos , Bactérias/genética , Microbiologia do Solo
2.
Int J Biometeorol ; 68(9): 1871-1884, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38814474

RESUMO

The Fall armyworm, Spodoptera frugiperda is the most notorious invasive pest species on maize, recently reported in India. The continuous spread of Fall armyworms to new ecological niches raises global concern. The current study is the first in India to forecast the suitability of a habitat for S. frugiperda using a maximum entropy algorithm. Predictions were made based on an analysis of the relationship between 109 occurrence records of S. frugiperda and pertinent historical, current, and predicted climatic data for the study area. The model indicated that S. frugiperda could thrive in different habitats under the current environmental circumstances, particularly in the west and south Indian states like Maharashtra, Tamil Nadu, and Karnataka. The model predicted that areas with higher latitudes, particularly in Uttar Pradesh, Odisha, West Bengal, and some portions of Telangana, Rajasthan, Chhattisgarh, and Madhya Pradesh, as well as some tracts of northeastern states like Assam and Arunachal Pradesh, would have highly climate-suitable conditions for S. frugiperda to occur in the future. The average AUC value was 0.852, which indicates excellent accuracy of the prediction. A Jackknife test of variables indicated that isothermality with the highest gain value was determining the potential geographic distribution of S. frugiperda. Our results will be useful for serving as an early warning tool to guide decision-making and prevent further spread toward new areas in India.


Assuntos
Ecossistema , Previsões , Spodoptera , Animais , Índia , Spodoptera/crescimento & desenvolvimento , Modelos Teóricos , Espécies Introduzidas , Clima
3.
J Environ Manage ; 370: 122446, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39270336

RESUMO

Human society is anchored in the global agroecosystem. For millennia, this system has provided humans with copious supplies of nutrient-rich food. Yet, through chemical intensification and simplification, vast shares of present-day farmland derive insufficient benefits from biodiversity and prove highly vulnerable to biotic stressors. Here, we argue that on-farm action centered on biological control can effectively defuse pest risk by bolstering foundational ecosystem services. By harnessing plant, animal and microbial biodiversity, biological control offers safe, efficacious and economically-sound plant health solutions and coevolved options for invasive species mitigation. In recent years, its scientific foundation has been fortified and solutions have been refined for myriad ecologically brittle systems. Yet, for biological control to be mainstreamed, it needs to be rebooted, intertwined with (on- and off-farm) agroecological tactics and refurbished - from research, policy and regulation, public-private partnerships up to modes of implementation. Misaligned incentives (for chemical pesticides) and adoption barriers further need to be removed, while its scientific underpinnings should become more interdisciplinary, policy-relevant, solution-oriented and linked with market demand. Thus, biological control could ensure human wellbeing in a nature-friendly manner and retain farmland ecological functioning under global change.

4.
J Insect Sci ; 22(2)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35349685

RESUMO

Wild swarms of the long-horned grasshoppers Ruspolia differens (Serville) which are widely harvested for consumption and sale in Africa are seasonal and unsustainable, hence the need for innovative ways of artificially producing the insects. We investigated the development, survival, and reproduction of R. differens in the laboratory on diets mixed with host plants [Digitaria gayana Kunth, Cynodon dactylon (L.) and Megathyrsus maximus Jacq (Poales: Poaceae); Ageratum conyzoides L. (Asterales: Asteraceae)] identified from guts of their wild conspecifics with a view to developing a suitable diet for artificial mass rearing of the edible insect. A standard diet comprising ground black soldier fly, Hermetia illucens L. (Diptera: Startiomyidae) larvae, soybean flour, maize flour, vitamin premix, and ground bones was tested for rearing R. differens as a control against the same ingredients incorporated with individual powders of the different host plants. Whereas R. differens developed more slowly in the diet mixed with D. gayana than in the control diet; its development was faster in the diet mixed with C. dactylon. Mortalities of R. differens in host plant-based diets were 42.5-52.5%, far lower than in the control diet with 71% mortality. The insects raised on the diet mixed with M. maximus laid approximately twice more eggs compared to R. differens fecundities from the rest of the diets. However, inclusion of host plants in the diets had no detectable influence on R. differens adult weight and longevity. These findings support inclusion of specific host plants in artificial diets used for mass rearing of R. differens to enhance its survival, development, and fecundity.


Assuntos
Gafanhotos , Animais , Dieta , Fertilidade , Larva , Óvulo
5.
J Therm Biol ; 95: 102786, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33454030

RESUMO

The edible long-horned grasshopper Ruspolia differens (Serville) is widely distributed and consumed in sub-Saharan Africa. Efficient mass rearing of the edible grasshopper is critical to ensure their sustainable supply for food and nutritional security. Hence, we investigated the effect of temperature on development, survival and reproduction of R. differens under six constant (15, 20, 25, 30, 32 and 35 °C) and fluctuating temperatures. Using Insect Life Cycle Modeling software we fitted, linear and non-linear models to R. differens development, mortality, longevity, and fecundity. The best-fitted functions were compiled for each life stage to yield a phenology model, which was stochastically simulated to estimate the life table parameters. We used the process-based climatic phenology models, and applied establishment risk index (ERI) and generation index (GI) in a geographic information system to map the potential distribution of R. differens under current and future climates. At optimum temperatures of 30-32 °C, egg incubation period was 14-15 days and the developmental time was shortest at 52.5-58 days. Lowest nymphal mortality (3.4-13%) and the highest female fecundity was obtained at 25-30 °C. The optimum temperature for the reproduction ranged between 27 and 30 °C. Most simulated lifetable parameters were at their maximum at 28 °C. Predictive models showed that countries in the East, Central, West, Southern and the Horn of Africa were suitable for establishment of R. differens under current climate scenarios (2000). However, by 2050, climatically suitable areas for the establishment of R. differens were predicted to shrink in the West, Southern and the Horn of Africa than its current distribution. We predict up to three generations per year for R. differens in sub-Saharan Africa under current scenarios which can increase to 4 under future scenarios. The optimum rearing temperatures identified can guide optimization of mass rearing of R. differens.


Assuntos
Distribuição Animal , Insetos Comestíveis/fisiologia , Gafanhotos/fisiologia , Modelos Teóricos , Termotolerância , Animais , Clima , Insetos Comestíveis/crescimento & desenvolvimento , Fertilidade , Gafanhotos/crescimento & desenvolvimento
6.
Molecules ; 26(18)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34577165

RESUMO

Endophytic fungal isolates Hypocrea lixii F3ST1 and Beauveria bassiana G1LU3 were evaluated for their potential to endophytically colonize and induce active compounds in Phaseolus vulgaris, as a defense mechanism against pea leafminer (Liriomyza huidobrensis) and fall armyworm (Spodoptera frugiperda). Endophytic colonization was achieved through seed inoculation with the volatile emissions from P. vulgaris plants being analyzed using GC-MS. The crude extracts of P. vulgaris obtained using methanol and dichloromethane were assayed against leafminer and fall armyworm larvae using leaf dipping and topical application, respectively. The two isolates successfully colonized the entire host plant (roots, stems, and leaves) with significant variation (p < 0.001) between fungal isolates and the controls. The results showed qualitative differences in the volatile profiles between the control plants, endophytically colonized and insect-damaged plants attributed to fungal inoculation and leafminer damage. The crude methanol extracts significantly reduced the percentage pupation of 2nd instar leafminer larvae (p < 0.001) and adult-flies emergence (p < 0.05). The survival of the 1st instar fall armyworm larvae was also significantly reduced (p < 0.001) compared to the controls. This study demonstrated the high potential of endophytic fungi H. lixii and B. bassiana in inducing mainly specific defense compounds in the common bean P. vulgaris that can be used against pea leafminer and fall armyworm.


Assuntos
Beauveria/metabolismo , Agentes de Controle Biológico/farmacologia , Dípteros/efeitos dos fármacos , Hypocreales/metabolismo , Phaseolus/metabolismo , Extratos Vegetais/farmacologia , Spodoptera/efeitos dos fármacos , Animais , Dípteros/crescimento & desenvolvimento , Endófitos/metabolismo , Larva/efeitos dos fármacos , Metanol/química , Cloreto de Metileno/química , Controle Biológico de Vetores/métodos , Phaseolus/microbiologia , Doenças das Plantas/prevenção & controle , Pupa/efeitos dos fármacos , Spodoptera/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
7.
J Invertebr Pathol ; 177: 107477, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33053399

RESUMO

Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a key invasive pest of maize and other crops in Africa. Entomopathogenic fungi play an important role in regulating the immature stages of this invasive pest as opposed to synthetic pesticides that are hazardous to human, environment and biodiversity. To tackle the adult stage of the pest (the moth) and to improve on the application strategy of the fungal-based biopesticides, this study evaluated the effect of various entomopathogenic fungi isolates on S. frugiperda moths. Twenty-two isolates (16 Metarhizium anisopliae and 6 Beauveria bassiana) were screened in the laboratory to assess their pathogenicity and virulence against S. frugiperda moths. The compatibility of the most pathogenic isolates with S. frugiperda pheromone FALLTRACT lure, the horizontal transmission of the inoculum among S. frugiperda moths, and the effect on oviposition were also determined under laboratory conditions. All 22 fungal isolates screened were pathogenic to the moths, but the mortality varied significantly among the isolates (P < 0.0001) seven days post-treatment. Beauveria bassiana ICIPE 621 and M. anisopliae ICIPE 7 outperformed all the other isolates by causing 100% mortality of the moths with the lowest LT50 values of 3.6 ± 0.1 and 3.9 ± 0.0 days, respectively. Both isolates were also found compatible with FALLTRACT lure, as the lure had no effect on the conidial germination in the laboratory. Male and female moths were able to horizontally transmit conidia of both fungal isolates to untreated moths, causing high mortality of S. frugiperda in 'donor' and 'recipient' groups. In addition, the oviposition, hatchability of eggs and longevity of larvae were significantly affected on the fungal infected females. Although single moths still retained high conidial numbers 72 h post-inoculation, the number of conidia decreased with time. These results suggest that ICIPE 7 and ICIPE 621 could be used in combination with S. frugiperda pheromone in an autodissemination approach to suppress S. frugiperda population.


Assuntos
Beauveria , Agentes de Controle Biológico/farmacologia , Metarhizium , Controle Biológico de Vetores , Spodoptera , Animais , Beauveria/patogenicidade , Beauveria/fisiologia , Feminino , Controle de Insetos , Masculino , Metarhizium/patogenicidade , Metarhizium/fisiologia , Feromônios , Virulência
8.
J Chem Ecol ; 45(4): 348-355, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30788655

RESUMO

Aggregation of the bean flower thrips, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), has been observed on cowpea, Vigna unguiculata (L.) Walp. To understand the mechanism underpinning this behavior, we studied the responses of M. sjostedti to headspace volatiles from conspecifics in a four-arm olfactometer. Both male and female M. sjostedti were attracted to male, but not to female odor. Gas chromatography/mass spectrometry (GC/MS) analyses revealed the presence of two distinct compounds in male M. sjostedti headspace, namely (R)-lavandulyl 3-methylbutanoate (major compound) and (R)-lavandulol (minor compound); by contrast, both compounds were only present in trace amounts in female headspace collections. A behavioral assay using synthetic compounds showed that male M. sjostedti was attracted to both (R)-lavandulyl 3-methylbutanoate and (R)-lavandulol, while females responded only to (R)-lavandulyl 3-methylbutanoate. This is the first report of a male-produced aggregation pheromone in the genus Megalurothrips. The bean flower thrips is the primary pest of cowpea, which is widely grown in sub-Saharan Africa. The attraction of male and female M. sjostedti to these compounds offers an opportunity to develop ecologically sustainable management methods for M. sjostedti in Africa.


Assuntos
Atrativos Sexuais/metabolismo , Tisanópteros/metabolismo , Vigna/parasitologia , Monoterpenos Acíclicos , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Monoterpenos/metabolismo , Comportamento Sexual Animal , Tisanópteros/fisiologia
9.
BMC Microbiol ; 18(Suppl 1): 142, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30470175

RESUMO

BACKGROUND: Tsetse fly-borne trypanosomiasis remains a significant problem in Africa despite years of interventions and research. The need for new strategies to control and possibly eliminate trypanosomiasis cannot be over-emphasized. Entomopathogenic fungi (EPF) infect their hosts through the cuticle and proliferate within the body of the host causing death in about 3-14 days depending on the concentration. During the infection process, EPF can reduce blood feeding abilities in hematophagous arthropods such as mosquitoes, tsetse flies and ticks, which may subsequently impact the development and transmission of parasites. Here, we report on the effects of infection of tsetse fly (Glossina fuscipes fuscipes) by the EPF, Metarhizium anisopliae ICIPE 30 wild-type strain (WT) and green fluorescent protein-transformed strain (GZP-1) on the ability of the flies to harbor and transmit the parasite, Trypanosoma congolense. RESULTS: Teneral flies were fed T. congolense-infected blood for 2 h and then infected using velvet carpet fabric impregnated with conidia covered inside a cylindrical plastic tube for 12 h. Control flies were fed with T. congolense-infected blood but not exposed to the fungal treatment via the carpet fabric inside a cylindrical plastic tube. Insects were dissected at 2, 3, 5 and 7 days post-fungal exposure and the density of parasites quantified. Parasite load decreased from 8.7 × 107 at day 2 to between 8.3 × 104 and 1.3 × 105 T. congolense ml- 1 at day 3 post-fungal exposure in fungus-treated (WT and GZP-1) fly groups. When T. congolense-infected flies were exposed to either fungal strain, they did not transmit the parasite to mice whereas control treatment flies remained capable of parasite transmission. Furthermore, M. anisopliae-inoculated flies which fed on T. congolense-infected mice were not able to acquire the parasites at 4 days post-fungal exposure while parasite acquisition was observed in the control treatment during the same period. CONCLUSIONS: Infection of the vector G. f. fuscipes by the entomopathogenic fungus M. anisopliae negatively affected the multiplication of the parasite T. congolense in the fly and reduced the vectorial capacity to acquire or transmit the parasite.


Assuntos
Metarhizium/fisiologia , Trypanosoma congolense/fisiologia , Tripanossomíase Africana/transmissão , Moscas Tsé-Tsé/microbiologia , Moscas Tsé-Tsé/parasitologia , África , Animais , Antibiose , Feminino , Insetos Vetores/microbiologia , Insetos Vetores/parasitologia , Masculino , Reprodução
10.
J Chem Ecol ; 44(7-8): 681-689, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29858747

RESUMO

Maize lethal necrosis is one of the most devastating diseases of maize causing yield losses reaching up to 90% in sub-Saharan Africa. The disease is caused by a combination of maize chlorotic mottle virus (MCMV) and any one of cereal viruses in the Potyviridae group such as sugarcane mosaic virus. MCMV has been reported to be transmitted mainly by maize thrips (Frankliniella williamsi) and onion thrips (Thrips tabaci). To better understand the role of thrips vectors in the epidemiology of the disease, we investigated behavioral responses of F. williamsi and T. tabaci, to volatiles collected from maize seedlings infected with MCMV in a four-arm olfactometer bioassay. Volatile profiles from MCMV-infected and healthy maize plants were compared by gas chromatography (GC) and GC coupled mass spectrometry analyses. In the bioassays, both sexes of F. williamsi and male T. tabaci were significantly attracted to volatiles from maize plants infected with MCMV compared to healthy plants and solvent controls. Moreover, volatile analysis revealed strong induction of (E)-4,8-dimethyl-1,3,7-nonatriene, methyl salicylate and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene in MCMV-infected maize seedlings. Our findings demonstrate MCMV induces changes in volatile profiles of host plants to elicit attraction of thrips vectors. The increased vector contact rates with MCMV-infected host plants could enhance virus transmission if thrips feed on the infected plants and acquire the pathogen prior to dispersal. Uncovering the mechanisms mediating interactions between vectors, host plants and pathogens provides useful insights for understanding the vector ecology and disease epidemiology, which in turn may contribute in designing integrated vector management strategies.


Assuntos
Gammaherpesvirinae/fisiologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Compostos Orgânicos Voláteis/metabolismo , Zea mays/virologia , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Insetos Vetores/virologia , Masculino , Plântula/química , Plântula/fisiologia , Plântula/virologia , Tisanópteros/virologia , Compostos Orgânicos Voláteis/análise , Zea mays/química , Zea mays/fisiologia
11.
Sensors (Basel) ; 17(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099780

RESUMO

Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.


Assuntos
Agricultura/instrumentação , Agricultura/métodos , Produtos Agrícolas/fisiologia , Ecologia/instrumentação , Ecologia/métodos , Comunicações Via Satélite , Zea mays/fisiologia , Humanos , Quênia
12.
Entomol Exp Appl ; 158(1): 17-24, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26726262

RESUMO

Male sexual aggregations are a common territorial, mating-related or resource-based, behaviour observed in diverse organisms, including insects such as thrips. The influence of factors such as plant substrate, time of day, and geographic location on aggregation of thrips is uncertain, therefore we monitored the dispersion of male and female bean flower thrips (BFT), Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), on cowpea, Vigna unguiculata (L.) Walp. (Fabaceae), over three cowpea growth stages and across three cowpea-growing areas of Kenya. Our results indicated that for all the crop growth stages, the density of BFTs varied over the time of day, with higher densities at 10:00, 13:00, and 16:00 hours than at 07:00 hours. Thrips densities did not differ among blocks at the budding stage, but they did at peak flowering and podding stages. Dispersion indices suggested that both male and female BFTs were aggregated. Active male aggregation occurred only on green plant parts and it varied across blocks, crop stages, and locations. Similarly, active female aggregation was observed in peak flowering and podding stages. Such active aggregation indicates a semiochemical or behaviour-mediated aggregation. Identification of such a semiochemical may offer new opportunities for refining monitoring and management strategies for BFT on cowpea, the most important grain legume in sub-Saharan Africa.

13.
Sci Rep ; 14(1): 9993, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693201

RESUMO

Termites are widely distributed globally and serve as a valuable food source in many countries. However, information on the myriad nutritional benefits of processed termite products in African markets remain largely unexploited. This study evaluated the phytochemicals, fatty acids, amino acids, minerals, vitamins and proximate composition of the edible winged termites (Macrotermes spp.) from three major Counties of Kenya. A total of 9 flavonoids, 5 alkaloids, and 1 cytokinin were identified. The oil content varied from 33 to 46%, exhibiting significant levels of beneficial omega 3 fatty acids, such as methyl (9Z,12Z,15Z)-octadecatrienoate and methyl (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoate, ranging from 82.7-95.1 to 6.3-8.1 µg/g, respectively, across the different regions. Four essential and cereal-limiting amino acids lysine (1.0-1.3 mg/g), methionine (0.08-0.1 mg/g), leucine (0.6-0.9 mg/g) and threonine (0.1-0.2 mg/g), were predominant. Moreover, termites had a rich profile of essential minerals, including iron (70.7-111.8 mg/100 g), zinc (4.4-16.2 mg/100 g) and calcium (33.1-53.0 mg/100 g), as well as vitamins A (2.4-6.4 mg/kg), C (0.6-1.9 mg/kg) and B12 (10.7-17.1 mg/kg). The crude protein (32.2-44.8%) and fat (41.2-49.1%) contents of termites from the various Counties was notably high. These findings demonstrated the promising nutrients potential of winged termites and advocate for their sustainable utilization in contemporary efficacious functional food applications to combat malnutrition.


Assuntos
Aminoácidos , Isópteros , Valor Nutritivo , Animais , Aminoácidos/análise , Minerais/análise , Vitaminas/análise , Ácidos Graxos/análise , Compostos Fitoquímicos/análise , Quênia , África , Humanos
14.
Sci Rep ; 14(1): 14355, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906908

RESUMO

Intensification of staple crops through conventional agricultural practices with chemical synthetic inputs has yielded positive outcomes in food security but with negative environmental impacts. Ecological intensification using cropping systems such as maize edible-legume intercropping (MLI) systems has the potential to enhance soil health, agrobiodiversity and significantly influence crop productivity. However, mechanisms underlying enhancement of biological soil health have not been well studied. This study investigated the shifts in rhizospheric soil and maize-root microbiomes and associated soil physico-chemical parameters in MLI systems of smallholder farms in comparison to maize-monoculture cropping systems (MMC). Maize-root and rhizospheric soil samples were collected from twenty-five farms each conditioned by MLI and MMC systems in eastern Kenya. Soil characteristics were assessed using Black oxidation and Walkley methods. High-throughput amplicon sequencing was employed to analyze fungal and bacterial communities, predicting their functional roles and diversity. The different MLI systems significantly impacted soil and maize-root microbial communities, resulting in distinct microbe sets. Specific fungal and bacterial genera and species were mainly influenced and enriched in the MLI systems (e.g., Bionectria solani, Sarocladium zeae, Fusarium algeriense, and Acremonium persicinum for fungi, and Bradyrhizobium elkanii, Enterobacter roggenkampii, Pantoea dispersa and Mitsuaria chitosanitabida for bacteria), which contribute to nutrient solubilization, decomposition, carbon utilization, plant protection, bio-insecticides/fertilizer production, and nitrogen fixation. Conversely, the MMC systems enriched phytopathogenic microbial species like Sphingomonas leidyi and Alternaria argroxiphii. Each MLI system exhibited a unique composition of fungal and bacterial communities that shape belowground biodiversity, notably affecting soil attributes, plant well-being, disease control, and agroecological services. Indeed, soil physico-chemical properties, including pH, nitrogen, organic carbon, phosphorus, and potassium were enriched in MLI compared to MMC cropping systems. Thus, diversification of agroecosystems with MLI systems enhances soil properties and shifts rhizosphere and maize-root microbiome in favor of ecologically important microbial communities.


Assuntos
Microbiologia do Solo , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia , Solo/química , Agricultura/métodos , Rizosfera , Microbiota , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/microbiologia , Ecossistema , Raízes de Plantas/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Biodiversidade , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fungos/genética , Fungos/classificação , Quênia , Produção Agrícola/métodos
15.
Heliyon ; 10(3): e25331, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38863875

RESUMO

Although edible rhinoceros beetle (Oryctes sp.) larvae are popularly consumed in many countries worldwide, they are prepared using different methods such as boiling, roasting, toasting, and deep-frying, whose effect on nutritional value and microbial safety is scarcely known. Here we investigated the effect of these methods on the nutritional value and microbial safety of Oryctes sp. larvae. Our hypothesis was that cooking the grubs using the four methods had no effect on their nutritional content and microbial loads and diversity. The grubs were analyzed for proximate composition, and fatty and amino acid profiles using standard chemical procedures; and microbial safety using standard culturing procedures. Deep-frying reduced protein and carbohydrate content, but elevated fat content. Boiling lowered ash content, but increased fibre and carbohydrate composition. Roasting and toasting increased protein and ash contents, respectively. Forty fatty acids were detected in the larvae, of which levels of only five were not significantly affected by cooking method, while the levels of the others were differentially affected by the different cooking methods. Amino acid profiles and levels were largely comparable across treatments, but lysine and arginine were higher in all cooked grubs than raw form. All the cooking methods eliminated Enterobacteriaceae, Shigella sp. and Campylobacter sp. from the grubs. Except boiling, all methods reduced total viable count to safe levels. Salmonella sp. were only eliminated by toasting and roasting; while boiling promoted growth of yeast and moulds. Staphylococcus aureus levels exceeded safety limits in all the cooking methods. These findings offer guidance on the type of method to use in preparing the grubs for desired nutritional and safety outcomes.

16.
Front Plant Sci ; 15: 1361739, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504884

RESUMO

Root-knot nematodes (Meloidogyne spp.) are serious pests of most food crops, causing up to 100% yield loss. Nevertheless, commercial nematicides are costly and harmful to the environment. While the nematicidal potential of crustacean and synthetic chitin has been demonstrated globally, research on the potential of insect-derived chitin for nematode control has received limited attention. Here, seven chitin-fortified black soldier fly frass fertilizer extracts (chFE) were assessed for their suppressiveness of Meloidogyne incognita and impacts on spinach growth in comparison with a commercial nematicide using in vitro and in vivo bioassays. The performance of chFE and control treatments was assessed by determining their effects on nematode egg hatchability; infective juvenile (J2) mortality and paralysis; number of galls, egg masses, and J2s per plant; and spinach root and shoot biomass. In vitro results showed that chFE and commercial nematicide suppressed nematode egg hatchability by 42% and 52%, respectively, relative to the control (sterile distilled water). Up to 100% paralysis was achieved when M. incognita J2s were exposed to either chFE or commercial nematicide. Further, the J2 mortality achieved using chFE (95%) was comparable to the value achieved using commercial nematicide (96%); in all treatments, mortality increased with exposure time. Similarly, up to 85% suppression of gall development was achieved when spinach plants were grown in soil drenched with chFE; up to 79% reduction in egg mass formation and 68% suppression of J2 development in the root system were achieved using chFE. Also, chFE application significantly increased spinach root and shoot biomass by 54%-74% and 39%-58%, respectively, compared to commercial nematicide. Our findings demonstrate the nematicidal potential of chFE and its benefits on crop production. Thus, chFE could be considered as a promising multipurpose, regenerative, and cost-effective input for sustainable management of plant-parasitic nematodes and enhancement of crop yield.

17.
Front Microbiol ; 15: 1385433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770022

RESUMO

Edible grasshopper, Ruspolia ruspolia, has nutritional and cherished cultural and economic importance to people from diverse cultures, particularly in over 20 African countries. It is consumed at home or commercially traded as sautéed, deep-fried, or boiled products. However, there is limited information on the hygiene practices of the vendors and the implications on the microbial safety of the final product. This research aimed at assessing the food safety knowledge, handling practices and shelf life of edible long-horned grasshopper products among vendors and the microbial safety of ready-to-eat products sold in 12 different markets in Uganda. Samples of raw, deep-fried and boiled grasshoppers were randomly collected from 74 vendors (62% street and 38% market vendors) and subjected to microbial analysis. Over 85% of the vendors surveyed had no public health food handler's certificate and >95% had limited post-harvest handling knowledge. Total aerobic bacteria (7.30-10.49 Log10 cfu/g), Enterobacteriaceae (5.53-8.56 Log10 cfu/g), yeasts and molds (4.96-6.01 Log10 cfu/g) total counts were significantly high and above the acceptable Codex Alimentarius Commission and Food Safety Authority of Ireland (FSAI) limits for ready-to-eat food products. Eight key pathogenic bacteria responsible for foodborne diseases were detected and these isolates were characterized as Bacillus cereus, Hafnia alvei, Serratia marcescens, Staphylococcus aureus, S. xylosus, S. scuiri, S. haemolyticus, and Pseudomonas aeruginosa. Findings from this study highlight the urgent need to create local and national food safety policies for the edible grasshopper "nsenene" subsector to regulate and guide street and market vending along the value chain, to prevent the transmission of foodborne diseases to consumers.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38330807

RESUMO

The false codling moth (FCM), Thaumatotibia leucotreta, is a major quarantine pest native to Africa. Physical postharvest phytosanitary measures such as cold and heat treatments are championed to control its spread to new regions. However, the molecular changes that T. leucotreta undergoes as it attempts to adjust to its surroundings during the treatments and withstand the extreme temperatures remain largely unknown. The current study employs RNA-seq using the next-generation Illumina HiSeq platform to produce transcriptome profiles for differential gene expression analysis of T. leucotreta larvae under thermal stress. The transcriptome assembly analysis revealed 226,067 transcripts, clustering into 127,018 unigenes. In comparison to the 25 °C treated group, 874, 91, 159, and 754 individual differentially expressed genes (DEGs) co-regulated at -10, 0, 40, and 50 °C, respectively were discovered. Annotation of the DEGs by gene ontology (GO) revealed several genes, previously implicated in low and high-temperature stresses, including heat shock proteins, cytochrome P450, cuticle proteins, odorant binding proteins, and immune system genes. Kyoto Encyclopedia of Genes and Genomics (KEGG) classification analysis revealed that substantive DEGs were those involved in metabolic pathways such as thiamine, purine, folate, and glycerolipid metabolism pathways. The RT-qPCR validation of several significantly up- and down-regulated DEGs showed congruence between RNA-seq and qPCR data. This baseline study lays a foundation for future research into the molecular mechanisms underlying T. leucotreta's cold/heat tolerance by providing a thorough differential gene expression analysis that has identified multiple genes that may be associated with the insect's ability to withstand cold and heat.


Assuntos
Perfilação da Expressão Gênica , Mariposas , Transcriptoma , Animais , Mariposas/genética , Temperatura Baixa , Proteínas de Insetos/genética , Temperatura Alta , Larva/genética , Larva/crescimento & desenvolvimento
19.
Future Foods ; 9: None, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932931

RESUMO

The prevailing global market demands locally produced, sustainable oils for biomedical applications. This study focused on evaluating the quality of cricket-derived oils and meals from Scapsipedus icipe Hugel, Tanga, and Gryllus bimaculatus De Geer common delicacy in Africa, following standard methods for physicochemical properties, fatty acid composition, and phytochemicals (oxalates, phytates, tannins, and polyphenols). The cricket oils physicochemical properties aligned with Codex Alimentarius standards for edible oils, including low solidification temperature (< 2 °C), a high refractive index (1.46), and a specific gravity of 0.88. Notably, peroxide values (1.9 to 2.5 mg mEq O2/kg), acid values (1.1 to 2.2 mg KOH/g), and saponification values (234-246 mg KOH/g) all are indicative of lightness and unsaturated fatty acids. Nutritionally, cricket powder was rich in protein (56.8-56.9% -) and fat (31.7-33.5% -of dry matter), with significant amounts of essential omega-3 and omega-6 fatty acids. Predominant saturated and monounsaturated fatty acids were palmitic (23.9-31.2 mg/100 g-) and oleic acids (10.9-11.4 mg/100 g- of oil), respectively. Antioxidant values (48.0 to 65.0 mg/100 g), inferred from total polyphenols, suggests a stable oil with long shelf-life. These results highlight the promising and sustainable potential of cricket-derived oils for applications in the food and pharmaceutical industries.

20.
J Econ Entomol ; 117(4): 1242-1253, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38430932

RESUMO

The utilization of yellow mealworm, Tenebrio molitor (Linnaeus, Coleoptera: Tenebrionidae), for food and feed is gaining interest globally. However, its production is hindered by expensive commercial diets. This study assessed mealworm growth performance, survival, bioconversion, and nutritional composition when fed on wheat bran (WB) with different inclusion levels (25%, 50%, 75%, and 100%) of Irish potato waste (PW). Results indicated that mealworms fed on diets with 25%-75% PW had increased body length and 1-2 times higher weight gain compared to sole WB and PW diets. The survival rate was 93%-94% across all diets. Mealworms fed on WB had a feed conversion ratio of 3.26, while the efficiency of diet conversion increased with PW inclusion levels. Mealworms fed on diets with 75% PW inclusion had the highest crude fat (48%) and energy levels (598 kcal/100 g), while sole WB produced mealworms with the highest crude protein (55%). The acid detergent fiber achieved using 100% WB was 2- to 3-fold higher, but the crude fiber and neutral detergent fiber did not vary significantly. Considerable amounts of lysine (1.6-2 mg/100 g), methionine (0.5-0.7 mg/100 g), leucine (1.4-2 mg/100 g), and threonine (0.8-1 mg/100 g) were achieved in the mealworm larvae. Our findings revealed that cheap agricultural by-products could be successfully used for the mass production of mealworms, substantially contributing to reduced production costs. Further exploration of the nutrient-dense mealworm larvae for the development of novel food and feed products is crucial.


Assuntos
Ração Animal , Larva , Tenebrio , Animais , Tenebrio/crescimento & desenvolvimento , Ração Animal/análise , Larva/crescimento & desenvolvimento , Solanum tuberosum , Dieta , Biomassa , Valor Nutritivo , Perda e Desperdício de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA