Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 173(4): 864-878.e29, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681454

RESUMO

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Família 4 do Citocromo P450/deficiência , Família 4 do Citocromo P450/genética , Descoberta de Drogas , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
2.
Nature ; 633(8031): 923-931, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39143213

RESUMO

Most kidney cancers are metabolically dysfunctional1-4, but how this dysfunction affects cancer progression in humans is unknown. We infused 13C-labelled nutrients in over 80 patients with kidney cancer during surgical tumour resection. Labelling from [U-13C]glucose varies across subtypes, indicating that the kidney environment alone cannot account for all tumour metabolic reprogramming. Compared with the adjacent kidney, clear cell renal cell carcinomas (ccRCCs) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in ex vivo organotypic cultures, indicating that suppressed labelling is tissue intrinsic. [1,2-13C]acetate and [U-13C]glutamine infusions in patients, coupled with measurements of respiration in isolated human kidney and tumour mitochondria, reveal lower electron transport chain activity in ccRCCs that contributes to decreased oxidative and enhanced reductive TCA cycle labelling. However, ccRCC metastases unexpectedly have enhanced TCA cycle labelling compared with that of primary ccRCCs, indicating a divergent metabolic program during metastasis in patients. In mice, stimulating respiration or NADH recycling in kidney cancer cells is sufficient to promote metastasis, whereas inhibiting electron transport chain complex I decreases metastasis. These findings in humans and mice indicate that metabolic properties and liabilities evolve during kidney cancer progression, and that mitochondrial function is limiting for metastasis but not growth at the original site.


Assuntos
Complexo I de Transporte de Elétrons , Neoplasias Renais , Mitocôndrias , Metástase Neoplásica , Animais , Feminino , Humanos , Masculino , Camundongos , Acetatos/metabolismo , Isótopos de Carbono/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/cirurgia , Respiração Celular , Ciclo do Ácido Cítrico , Progressão da Doença , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Neoplasias Renais/cirurgia , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução
3.
Mol Cell ; 76(5): 838-851.e5, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31564558

RESUMO

Intermediary metabolism in cancer cells is regulated by diverse cell-autonomous processes, including signal transduction and gene expression patterns, arising from specific oncogenotypes and cell lineages. Although it is well established that metabolic reprogramming is a hallmark of cancer, we lack a full view of the diversity of metabolic programs in cancer cells and an unbiased assessment of the associations between metabolic pathway preferences and other cell-autonomous processes. Here, we quantified metabolic features, mostly from the 13C enrichment of molecules from central carbon metabolism, in over 80 non-small cell lung cancer (NSCLC) cell lines cultured under identical conditions. Because these cell lines were extensively annotated for oncogenotype, gene expression, protein expression, and therapeutic sensitivity, the resulting database enables the user to uncover new relationships between metabolism and these orthogonal processes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/metabolismo , Metaboloma/fisiologia , Biomarcadores Tumorais/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Metabolômica/métodos , Neoplasias/metabolismo
4.
Mol Cell ; 64(5): 859-874, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27867011

RESUMO

Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) regulates pyruvate dehydrogenase complex (PDC) by acetylating pyruvate dehydrogenase (PDH) and PDH phosphatase. How ACAT1 is "hijacked" to contribute to the Warburg effect in human cancer remains unclear. We found that active, tetrameric ACAT1 is commonly upregulated in cells stimulated by EGF and in diverse human cancer cells, where ACAT1 tetramers, but not monomers, are phosphorylated and stabilized by enhanced Y407 phosphorylation. Moreover, we identified arecoline hydrobromide (AH) as a covalent ACAT1 inhibitor that binds to and disrupts only ACAT1 tetramers. The resultant AH-bound ACAT1 monomers cannot reform tetramers. Inhibition of tetrameric ACAT1 by abolishing Y407 phosphorylation or AH treatment results in decreased ACAT1 activity, leading to increased PDC flux and oxidative phosphorylation with attenuated cancer cell proliferation and tumor growth. These findings provide a mechanistic understanding of how oncogenic events signal through distinct acetyltransferases to regulate cancer metabolism and suggest ACAT1 as an anti-cancer target.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Mitocôndrias/enzimologia , Complexo Piruvato Desidrogenase/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Fator de Crescimento Epidérmico/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Nus , Células NIH 3T3 , Neoplasias/enzimologia , Neoplasias/patologia , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
5.
Mol Cell ; 60(4): 571-83, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26481663

RESUMO

Phosphoenolpyruvate carboxykinase (PEPCK) is well known for its role in gluconeogenesis. However, PEPCK is also a key regulator of TCA cycle flux. The TCA cycle integrates glucose, amino acid, and lipid metabolism depending on cellular needs. In addition, biosynthetic pathways crucial to tumor growth require the TCA cycle for the processing of glucose and glutamine derived carbons. We show here an unexpected role for PEPCK in promoting cancer cell proliferation in vitro and in vivo by increasing glucose and glutamine utilization toward anabolic metabolism. Unexpectedly, PEPCK also increased the synthesis of ribose from non-carbohydrate sources, such as glutamine, a phenomenon not previously described. Finally, we show that the effects of PEPCK on glucose metabolism and cell proliferation are in part mediated via activation of mTORC1. Taken together, these data demonstrate a role for PEPCK that links metabolic flux and anabolic pathways to cancer cell proliferation.


Assuntos
Neoplasias Colorretais/patologia , Glucose/metabolismo , Glutamina/metabolismo , Complexos Multiproteicos/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Glicólise , Células HT29 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Transplante de Neoplasias
6.
Mol Cell ; 56(3): 414-424, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25458842

RESUMO

Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria.


Assuntos
Sobrevivência Celular , Ciclo do Ácido Cítrico , Glutamina/metabolismo , Ácido Pirúvico/metabolismo , Acetilcoenzima A/biossíntese , Animais , Antineoplásicos/farmacologia , Transporte Biológico , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Ácido Cítrico/metabolismo , Ácidos Cumáricos/farmacologia , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos Nus , Mitocôndrias/metabolismo , Oxirredução , Desidrogenase do Álcool de Açúcar/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mol Cell ; 55(4): 552-65, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25042803

RESUMO

Although the oxidative pentose phosphate pathway is important for tumor growth, how 6-phosphogluconate dehydrogenase (6PGD) in this pathway is upregulated in human cancers is unknown. We found that 6PGD is commonly activated in EGF-stimulated cells and human cancer cells by lysine acetylation. Acetylation at K76 and K294 of 6PGD promotes NADP(+) binding to 6PGD and formation of active 6PGD dimers, respectively. Moreover, we identified DLAT and ACAT2 as upstream acetyltransferases of K76 and K294, respectively, and HDAC4 as the deacetylase of both sites. Expressing acetyl-deficient mutants of 6PGD in cancer cells significantly attenuated cell proliferation and tumor growth. This is due in part to reduced levels of 6PGD products ribulose-5-phosphate and NADPH, which led to reduced RNA and lipid biosynthesis as well as elevated ROS. Furthermore, 6PGD activity is upregulated with increased lysine acetylation in primary leukemia cells from human patients, providing mechanistic insights into 6PGD upregulation in cancer cells.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Di-Hidrolipoil-Lisina-Resíduo Acetiltransferase/metabolismo , Histona Desacetilases/metabolismo , Leucemia/patologia , Neoplasias Pulmonares/patologia , Lisina/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , NADP/metabolismo , Neoplasias Experimentais , Ligação Proteica/fisiologia , Multimerização Proteica
8.
J Biol Chem ; 292(15): 6303-6311, 2017 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-28223357

RESUMO

mTOR, the mammalian target of rapamycin, integrates growth factor and nutrient signals to promote a transformation from catabolic to anabolic metabolism, cell growth, and cell cycle progression. Phosphatidic acid (PA) interacts with the FK506-binding protein-12-rapamycin-binding (FRB) domain of mTOR, which stabilizes both mTOR complexes: mTORC1 and mTORC2. We report here that mTORC1 and mTORC2 are activated in response to exogenously supplied fatty acids via the de novo synthesis of PA, a central metabolite for membrane phospholipid biosynthesis. We examined the impact of exogenously supplied fatty acids on mTOR in KRas-driven cancer cells, which are programmed to utilize exogenous lipids. The induction of mTOR by oleic acid was dependent upon the enzymes responsible for de novo synthesis of PA. Suppression of the de novo synthesis of PA resulted in G1 cell cycle arrest. Although it has long been appreciated that mTOR is a sensor of amino acids and glucose, this study reveals that mTOR also senses the presence of lipids via production of PA.


Assuntos
Complexos Multiproteicos/metabolismo , Ácidos Fosfatídicos/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Células MCF-7 , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Ácido Oleico/farmacologia , Ácidos Fosfatídicos/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Serina-Treonina Quinases TOR/genética
9.
J Biol Chem ; 292(44): 18203-18216, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-28916726

RESUMO

Many cancer treatments, such as those for managing recalcitrant tumors like pancreatic ductal adenocarcinoma, cause off-target toxicities in normal, healthy tissue, highlighting the need for more tumor-selective chemotherapies. ß-Lapachone is bioactivated by NAD(P)H:quinone oxidoreductase 1 (NQO1). This enzyme exhibits elevated expression in most solid cancers and therefore is a potential cancer-specific target. ß-Lapachone's therapeutic efficacy partially stems from the drug's induction of a futile NQO1-mediated redox cycle that causes high levels of superoxide and then peroxide formation, which damages DNA and causes hyperactivation of poly(ADP-ribose) polymerase, resulting in extensive NAD+/ATP depletion. However, the effects of this drug on energy metabolism due to NAD+ depletion were never described. The futile redox cycle rapidly consumes O2, rendering standard assays of Krebs cycle turnover unusable. In this study, a multimodal analysis, including metabolic imaging using hyperpolarized pyruvate, points to reduced oxidative flux due to NAD+ depletion after ß-lapachone treatment of NQO1+ human pancreatic cancer cells. NAD+-sensitive pathways, such as glycolysis, flux through lactate dehydrogenase, and the citric acid cycle (as inferred by flux through pyruvate dehydrogenase), were down-regulated by ß-lapachone treatment. Changes in flux through these pathways should generate biomarkers useful for in vivo dose responses of ß-lapachone treatment in humans, avoiding toxic side effects. Targeting the enzymes in these pathways for therapeutic treatment may have the potential to synergize with ß-lapachone treatment, creating unique NQO1-selective combinatorial therapies for specific cancers. These findings warrant future studies of intermediary metabolism in patients treated with ß-lapachone.


Assuntos
Antineoplásicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Naftoquinonas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Pró-Fármacos/farmacologia , Ativação Metabólica , Antineoplásicos/metabolismo , Biomarcadores/metabolismo , Isótopos de Carbono , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Dano ao DNA , Inibidores Enzimáticos/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Metabolômica/métodos , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Naftoquinonas/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/metabolismo , Análise de Componente Principal , Pró-Fármacos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
10.
J Biol Chem ; 291(44): 22861-22867, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27660392

RESUMO

The discovery that oxidized vitamin C, dehydroascorbate (DHA), can induce oxidative stress and cell death in cancer cells has rekindled interest in the use of high dose vitamin C (VC) as a cancer therapy. However, high dose VC has shown limited efficacy in clinical trials, possibly due to the decreased bioavailability of oral VC. Because human erythrocytes express high levels of Glut1, take up DHA, and reduce it to VC, we tested how erythrocytes might impact high dose VC therapies. Cancer cells are protected from VC-mediated cell death when co-cultured with physiologically relevant numbers of erythrocytes. Pharmacological doses of VC induce oxidative stress, GSH depletion, and increased glucose flux through the oxidative pentose phosphate pathway (PPP) in erythrocytes. Incubation of erythrocytes with VC induced hemolysis, which was exacerbated in erythrocytes from glucose-6-phosphate dehydrogenase (G6PD) patients and rescued by antioxidants. Thus, erythrocytes protect cancer cells from VC-induced oxidative stress and undergo hemolysis in vitro, despite activation of the PPP. These results have implications on the use of high dose VC in ongoing clinical trials and highlight the importance of the PPP in the response to oxidative stress.


Assuntos
Ácido Ascórbico/efeitos adversos , Eritrócitos/citologia , Glutationa/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Via de Pentose Fosfato , Ácido Ascórbico/metabolismo , Linhagem Celular Tumoral , Ácido Desidroascórbico/efeitos adversos , Ácido Desidroascórbico/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Oxirredução , Estresse Oxidativo/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 108(21): 8674-9, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555572

RESUMO

Tumor cells require a constant supply of macromolecular precursors, and interrupting this supply has been proposed as a therapeutic strategy in cancer. Precursors for lipids, nucleic acids, and proteins are generated in the tricarboxylic acid (TCA) cycle and removed from the mitochondria to participate in biosynthetic reactions. Refilling the pool of precursor molecules (anaplerosis) is therefore crucial to maintain cell growth. Many tumor cells use glutamine to feed anaplerosis. Here we studied how "glutamine-addicted" cells react to interruptions of glutamine metabolism. Silencing of glutaminase (GLS), which catalyzes the first step in glutamine-dependent anaplerosis, suppressed but did not eliminate the growth of glioblastoma cells in culture and in vivo. Profiling metabolic fluxes in GLS-suppressed cells revealed induction of a compensatory anaplerotic mechanism catalyzed by pyruvate carboxylase (PC), allowing the cells to use glucose-derived pyruvate rather than glutamine for anaplerosis. Although PC was dispensable when glutamine was available, forcing cells to adapt to low-glutamine conditions rendered them absolutely dependent on PC for growth. Furthermore, in other cell lines, measuring PC activity in nutrient-replete conditions predicted dependence on specific anaplerotic enzymes. Cells with high PC activity were resistant to GLS silencing and did not require glutamine for survival or growth, but displayed suppressed growth when PC was silenced. Thus, PC-mediated, glucose-dependent anaplerosis allows cells to achieve glutamine independence. Induction of PC during chronic suppression of glutamine metabolism may prove to be a mechanism of resistance to therapies targeting glutaminolysis.


Assuntos
Proliferação de Células , Glioblastoma/metabolismo , Glutamina/metabolismo , Piruvato Carboxilase/fisiologia , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico , Glioblastoma/patologia , Glutaminase/antagonistas & inibidores , Glutamina/deficiência , Humanos , Piruvato Carboxilase/metabolismo , Ácido Pirúvico/metabolismo
12.
Science ; 384(6701): eadj4301, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38870309

RESUMO

Mitochondria are critical for proper organ function and mechanisms to promote mitochondrial health during regeneration would benefit tissue homeostasis. We report that during liver regeneration, proliferation is suppressed in electron transport chain (ETC)-dysfunctional hepatocytes due to an inability to generate acetyl-CoA from peripheral fatty acids through mitochondrial ß-oxidation. Alternative modes for acetyl-CoA production from pyruvate or acetate are suppressed in the setting of ETC dysfunction. This metabolic inflexibility forces a dependence on ETC-functional mitochondria and restoring acetyl-CoA production from pyruvate is sufficient to allow ETC-dysfunctional hepatocytes to proliferate. We propose that metabolic inflexibility within hepatocytes can be advantageous by limiting the expansion of ETC-dysfunctional cells.


Assuntos
Acetilcoenzima A , Hepatócitos , Regeneração Hepática , Mitocôndrias Hepáticas , Ácido Pirúvico , Animais , Hepatócitos/metabolismo , Acetilcoenzima A/metabolismo , Camundongos , Ácido Pirúvico/metabolismo , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Proliferação de Células , Ácidos Graxos/metabolismo , Fígado/metabolismo , Transporte de Elétrons , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Masculino
13.
Front Oncol ; 13: 1025443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035141

RESUMO

The glucocorticoid receptor (GR) is an important anti-cancer target in lymphoid cancers but has been understudied in solid tumors like lung cancer, although glucocorticoids are often given with chemotherapy regimens to mitigate side effects. Here, we identify a dexamethasone-GR mediated anti-cancer response in a subset of aggressive non-small cell lung cancers (NSCLCs) that harbor Serine/Threonine Kinase 11 (STK11/LKB1) mutations. High tumor expression of carbamoyl phosphate synthase 1 (CPS1) was strongly linked to the presence of LKB1 mutations, was the best predictor of NSCLC dexamethasone (DEX) sensitivity (p < 10-16) but was not mechanistically involved in DEX sensitivity. Subcutaneous, orthotopic and metastatic NSCLC xenografts, biomarker-selected, STK11/LKB1 mutant patient derived xenografts, and genetically engineered mouse models with KRAS/LKB1 mutant lung adenocarcinomas all showed marked in vivo anti-tumor responses with the glucocorticoid dexamethasone as a single agent or in combination with cisplatin. Mechanistically, GR activation triggers G1/S cell cycle arrest in LKB1 mutant NSCLCs by inducing the expression of the cyclin-dependent kinase inhibitor, CDKN1C/p57(Kip2). All findings were confirmed with functional genomic experiments including CRISPR knockouts and exogenous expression. Importantly, DEX-GR mediated cell cycle arrest did not interfere with NSCLC radiotherapy, or platinum response in vitro or with platinum response in vivo. While DEX induced LKB1 mutant NSCLCs in vitro exhibit markers of cellular senescence and demonstrate impaired migration, in vivo DEX treatment of a patient derived xenograft (PDX) STK11/LKB1 mutant model resulted in expression of apoptosis markers. These findings identify a previously unknown GR mediated therapeutic vulnerability in STK11/LKB1 mutant NSCLCs caused by induction of p57(Kip2) expression with both STK11 mutation and high expression of CPS1 as precision medicine biomarkers of this vulnerability.

14.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38168314

RESUMO

Metabolomic profiling is instrumental in understanding the systemic and cellular impact of inborn errors of metabolism (IEMs), monogenic disorders caused by pathogenic genomic variants in genes involved in metabolism. This study encompasses untargeted metabolomics analysis of plasma from 474 individuals and fibroblasts from 67 subjects, incorporating healthy controls, patients with 65 different monogenic diseases, and numerous undiagnosed cases. We introduce a web application designed for the in-depth exploration of this extensive metabolomics database. The application offers a user-friendly interface for data review, download, and detailed analysis of metabolic deviations linked to IEMs at the level of individual patients or groups of patients with the same diagnosis. It also provides interactive tools for investigating metabolic relationships and offers comparative analyses of plasma and fibroblast profiles. This tool emphasizes the metabolic interplay within and across biological matrices, enriching our understanding of metabolic regulation in health and disease. As a resource, the application provides broad utility in research, offering novel insights into metabolic pathways and their alterations in various disorders.

15.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798172

RESUMO

Most kidney cancers display evidence of metabolic dysfunction1-4 but how this relates to cancer progression in humans is unknown. We used a multidisciplinary approach to infuse 13C-labeled nutrients during surgical tumour resection in over 70 patients with kidney cancer. Labeling from [U-13C]glucose varies across cancer subtypes, indicating that the kidney environment alone cannot account for all metabolic reprogramming in these tumours. Compared to the adjacent kidney, clear cell renal cell carcinomas (ccRCC) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in organotypic slices cultured ex vivo, indicating that suppressed labeling is tissue intrinsic. Infusions of [1,2-13C]acetate and [U-13C]glutamine in patients, coupled with respiratory flux of mitochondria isolated from kidney and tumour tissue, reveal primary defects in mitochondrial function in human ccRCC. However, ccRCC metastases unexpectedly have enhanced labeling of TCA cycle intermediates compared to primary ccRCCs, indicating a divergent metabolic program during ccRCC metastasis in patients. In mice, stimulating respiration in ccRCC cells is sufficient to promote metastatic colonization. Altogether, these findings indicate that metabolic properties evolve during human kidney cancer progression, and suggest that mitochondrial respiration may be limiting for ccRCC metastasis but not for ccRCC growth at the site of origin.

16.
STAR Protoc ; 3(2): 101345, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496802

RESUMO

Analyzing the metabolic dependencies of tumor cells is vital for cancer diagnosis and treatment. Here, we describe a protocol for 13C-stable glucose and glutamine isotope tracing in mice HER2+ breast cancer brain metastatic lesions. We describe how to inject cancer cells intracardially to generate brain metastatic lesions in mice. We then detail how to perform 13C-stable isotope infusion in mice with established brain metastasis. Finally, we outline steps for sample collection, processing for metabolite extraction, and analyzing mass spectrometry data. For complete details on the use and execution of this protocol, please refer to Parida et al. (2022).


Assuntos
Neoplasias Encefálicas , Metabolômica , Animais , Neoplasias Encefálicas/diagnóstico , Marcação por Isótopo/métodos , Isótopos , Espectrometria de Massas , Metabolômica/métodos , Camundongos
17.
Mol Ther Methods Clin Dev ; 24: 380-393, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35284590

RESUMO

Ex vivo expansion conditions used to generate T cells for immunotherapy are thought to adopt metabolic phenotypes that impede therapeutic efficacy in vivo. The comparison of five different culture media used for clinical T cell expansion revealed unique optima based on different output variables, including proliferation, differentiation, function, activation, and mitochondrial phenotypes. The extent of proliferation and function depended on the culture media rather than stimulation conditions. Moreover, the expanded T cell end products adapted their metabolism when switched to a different media formulation, as shown by glucose and glutamine uptake and patterns of glucose isotope labeling. However, adoption of these metabolic phenotypes was uncoupled to T cell function. Expanded T cell products cultured in ascites from ovarian cancer patients displayed suppressed mitochondrial activity and function irrespective of the ex vivo expansion media. Thus, ex vivo T cell expansion media have profound impacts on metabolism and function.

18.
Sci Adv ; 8(35): eabn9550, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36044570

RESUMO

In mice and humans with cancer, intravenous 13C-glucose infusion results in 13C labeling of tumor tricarboxylic acid (TCA) cycle intermediates, indicating that pyruvate oxidation in the TCA cycle occurs in tumors. The TCA cycle is usually coupled to the electron transport chain (ETC) because NADH generated by the cycle is reoxidized to NAD+ by the ETC. However, 13C labeling does not directly report ETC activity, and other pathways can oxidize NADH, so the ETC's role in these labeling patterns is unverified. We examined the impact of the ETC complex I inhibitor IACS-010759 on tumor 13C labeling. IACS-010759 suppresses TCA cycle labeling from glucose or lactate and increases labeling from glutamine. Cancer cells expressing yeast NADH dehydrogenase-1, which recycles NADH to NAD+ independently of complex I, display normalized labeling when complex I is inhibited, indicating that cancer cell ETC activity regulates TCA cycle metabolism and 13C labeling from multiple nutrients.


Assuntos
Complexo I de Transporte de Elétrons , Glucose , Glutamina , Neoplasias , Animais , Transporte de Elétrons , Complexo I de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Isótopos , Camundongos , NAD/metabolismo , Neoplasias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Cell Metab ; 34(1): 90-105.e7, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34986341

RESUMO

HER2+ breast cancer patients are presented with either synchronous (S-BM), latent (Lat), or metachronous (M-BM) brain metastases. However, the basis for disparate metastatic fitness among disseminated tumor cells of similar oncotype within a distal organ remains unknown. Here, employing brain metastatic models, we show that metabolic diversity and plasticity within brain-tropic cells determine metastatic fitness. Lactate secreted by aggressive metastatic cells or lactate supplementation to mice bearing Lat cells limits innate immunosurveillance and triggers overt metastasis. Attenuating lactate metabolism in S-BM impedes metastasis, while M-BM adapt and survive as residual disease. In contrast to S-BM, Lat and M-BM survive in equilibrium with innate immunosurveillance, oxidize glutamine, and maintain cellular redox homeostasis through the anionic amino acid transporter xCT. Moreover, xCT expression is significantly higher in matched M-BM brain metastatic samples compared to primary tumors from HER2+ breast cancer patients. Inhibiting xCT function attenuates residual disease and recurrence in these preclinical models.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias da Mama/metabolismo , Feminino , Humanos , Camundongos
20.
Hepatol Commun ; 4(3): 425-433, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32140658

RESUMO

Carbon-13 magnetic resonance spectroscopy (MRS) following oral intake of 13C-labeled glucose is the gold standard for imaging glycogen metabolism in humans. However, the temporal resolution of previous studies has been >13 minutes. Here, we describe a high-sensitivity 13C MRS method for imaging hepatic glycogen synthesis with a temporal resolution of 1 minute or less. Nuclear magnetic resonance spectra were acquired from the liver of 3 healthy volunteers, using a 13C clamshell radiofrequency transmit and paddle-shaped array receive coils in a 3 Tesla magnetic resonance imaging system. Following a 15-minute baseline 13C MRS scan of the liver, [1-13C]-glucose was ingested and 13C MRS data were acquired for an additional 1-3 hours. Dynamic change of the hepatic glycogen synthesis level was analyzed by reconstructing the acquired MRS data with temporal resolutions of 30 seconds to 15 minutes. Plasma levels of 13C-labeled glucose and lactate were measured using gas chromatography-mass spectrometry. While not detected at baseline 13C MRS, [1-13C]-labeled α-glucose and ß-glucose and glycogen peaks accumulated rapidly, beginning as early as ~2 minutes after oral administration of [1-13C]-glucose. The [1-13C]-glucose signals peaked at ~5 minutes, whereas [1-13C]-glycogen peaked at ~25 minutes after [1-13C]-glucose ingestion; both signals declined toward baseline levels over the next 1-3 hours. Plasma levels of 13C-glucose and 13C-lactate rose gradually, and approximately 20% of all plasma glucose and 5% of plasma lactate were 13C-labeled by 2 hours after ingestion. Conclusion: We observed rapid accumulation of hepatic [1-13C]-glycogen following orally administered [1-13C]-glucose, using a dynamic 13C MRS method with a temporal resolution of 1 minute or less. Commercially available technology allows high temporal resolution studies of glycogen metabolism in the human liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA