Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Life Sci ; 301: 120599, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513085

RESUMO

Lung inflammation is modulated by cholinergic signaling and exercise training protects mice against pulmonary emphysema development; however, whether exercise training engages cholinergic signaling is unknown. AIMS: As cholinergic signaling is directly linked to the vesicular acetylcholine transporter (VAChT) levels, we evaluated whether the effects of aerobic exercise training depend on the VAChT levels in mice with pulmonary emphysema. MAIN METHODS: Wild-type (WT) and mutant (KDHOM) mice (65-70% of reduction in VAChT levels) were exposed to cigarette smoke (30 min, 2×/day, 5×/week, 12 weeks) and submitted or not to aerobic exercise training on a treadmill (60 min/day, 5×/week, 12 weeks). Lung function and inflammation were evaluated. KEY FINDINGS: Cigarette smoke reduced body mass in mice (p < 0.001) and increased alveolar diameter (p < 0.001), inflammation (p < 0.001) and collagen deposition (p < 0.01) in lung tissue. Both trained groups improved their performance in the final physical test compared to the initial test (p < 0.001). In WT mice, exercise training protected against emphysema development (p < 0.05), reduced mononuclear cells infiltrate (p < 0.001) and increased MAC-2 positive cells in lung parenchyma (p < 0.05); however, these effects were not observed in KDHOM mice. The exercise training reduced iNOS-positive cells (p < 0.001) and collagen fibers deposition (p < 0.05) in lung parenchyma of WT and KDHOM mice, although KDHOM mice showed higher levels of iNOS-positive cells. SIGNIFICANCE: Our data suggest that the protective effects of aerobic exercise training on pulmonary emphysema are, at least in part, dependent on the integrity of the lung cholinergic signaling.


Assuntos
Fumar Cigarros , Enfisema , Enfisema Pulmonar , Animais , Colinérgicos , Inflamação , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/prevenção & controle , Proteínas Vesiculares de Transporte de Acetilcolina
2.
Sci Rep ; 10(1): 16158, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978438

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
J Appl Physiol (1985) ; 128(1): 59-69, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647720

RESUMO

The present study investigated the effects of exercise on the cardiac nuclear factor (erythroid-derived 2) factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1) pathway in an experimental model of chronic fructose consumption. Male C57BL/6 mice were assigned to Control, Fructose (20% fructose in drinking water), Exercise (treadmill exercise at moderate intensity), and Fructose + Exercise groups (n = 10). After 12 wk, the energy intake and body weight in the groups were similar. Maximum exercise testing, resting energy expenditure, resting oxygen consumption, and carbon dioxide production increased in the exercise groups (Exercise and Fructose + Exercise vs. Control and Fructose groups, P < 0.05). Chronic fructose intake induced circulating hypercholesterolemia, hypertriglyceridemia, and hyperleptinemia and increased white adipose tissue depots, with no changes in blood pressure. This metabolic environment increased circulating IL-6, IL-1ß, IL-10, cardiac hypertrophy, and cardiac NF-κB-p65 and TNF-α expression, which were reduced by exercise (P < 0.05). Cardiac ANG II type 1 receptor and NAD(P)H oxidase 2 (NOX2) were increased by fructose intake and exercise decreased this response (P < 0.05). Exercise increased the cardiac expression of the NRF2-to-KEAP1 ratio and phase II antioxidants in fructose-fed mice (P < 0.05). NOX4, glutathione reductase, and catalase protein expression were similar between the groups. These findings suggest that exercise confers modulatory cardiac effects, improving antioxidant defenses through the NRF2/KEAP1 pathway and decreasing oxidative stress, representing a potential nonpharmacological approach to protect against fructose-induced cardiometabolic diseases.NEW & NOTEWORTHY This is the first study to evaluate the cardiac modulation of NAD(P)H oxidase (NOX), the NRF2/Kelch-like ECH-associated protein 1 pathway (KEAP), and the thioredoxin (TRX1) system through exercise in the presence of moderate fructose intake. We demonstrated a novel mechanism by which exercise improves cardiac antioxidant defenses in an experimental model of chronic fructose intake, which involves NRF2-to-KEAP1 ratio modulation, enhancing the local phase II antioxidants hemoxygenase-1, thioredoxin reductase (TXNRD1), and peroxiredoxin1B (PDRX1), and inhibiting cardiac NOX2 overexpression.


Assuntos
Cardiomegalia/terapia , Frutose/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Antioxidantes/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Glutationa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidases/genética , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Condicionamento Físico Animal , Espécies Reativas de Oxigênio/metabolismo , Edulcorantes/toxicidade
4.
Sci Rep ; 9(1): 9344, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31249347

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) is a syndrome that comprises several distinct and overlapping phenotypes. In addition to persistent airflow limitation and respiratory symptoms, COPD is also characterized by chronic systemic inflammation. Epidemiological studies have shown that dietary fibers, fruits and vegetables intake protects against the COPD development, while fructose-loading is associated with increased risk of asthma and chronic bronchitis. Since dietary factors might affect susceptibility to COPD by modulating oxidative stress and inflammatory responses, we evaluated how fructose feeding might affect the smoking-induced emphysema in mice. We found that chronic fructose intake induced destruction and remodeling of lung parenchyma and impairment of respiratory mechanics, which are associated with distinctive cytokine profiles in bronchoalveolar lavage fluid, blood plasma and skeletal muscle. The combined effects of chronic fructose intake and cigarette smoking on destruction of lung parenchyma are more pronounced than the effects of either alone. Excessive intake of fructose might directly cause pulmonary emphysema in mice rather than just altering its natural history by facilitating the installation of a low-grade systemic inflammatory milieu.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA