Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(2): 170-174, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36482205

RESUMO

Strongly correlated quantum particles in lattice potentials are the building blocks for a wide variety of quantum insulators-for instance, Mott phases and density waves breaking lattice symmetry1-3. Such collective states are accessible to bosonic and fermionic systems2,4-10,11,12. To expand further the spectrum of accessible quantum matter phases, mixing both species is theoretically appealing because density order then competes with phase separation13-16. Here we manipulate such a Bose-Fermi mixture by confining neutral (boson-like) and charged (fermion-like) dipolar excitons in an artificial square lattice of a GaAs bilayer. At unitary lattice filling, strong inter- and intraspecies interactions stabilize insulating phases when the fraction of charged excitons is around (1/3, 1/2, 2/3). We evidence that dual Bose-Fermi density waves are then realized, with species ordered in alternating stripes. Our observations highlight that dipolar excitons allow for controlled implementations of Bose-Fermi Hubbard models extended by off-site interactions.

2.
Nano Lett ; 22(5): 2155-2160, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35044187

RESUMO

Periodic arrays of noble metal nanoparticles are emblematic nanostructures in photonics. Their ability to sustain localized surface plasmon resonances has been used throughout the years to demonstrate a variety of passive and active functionalities such as enhanced luminescence in dipolar media and LEDs as well as higher responsivities in photoconductive detectors. Here, we show that additional magnetic resonances, associated with inductive current loops between the nanoparticles and accessible with transverse electric waves, emerge in the limit of dense arrays with subwavelength periods. Moreover, their interplay with the plasmons of the system results in spectrally sharp analogues of electromagnetically induced absorption (EIA). We use these metasurfaces to induce changes and enhancements in the emission, absorption, photoconduction, and polarization properties of active layers of PbS nanocrystals, illustrating the potential of EIA beyond the passive functionalities demonstrated so far in literature.

3.
Nano Lett ; 22(2): 710-715, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35020404

RESUMO

We demonstrate multimode optomechanical sensing of individual nanoparticles with a radius between 75 and 150 nm. A semiconductor optomechanical disk resonator is optically driven and detected under ambient conditions, as nebulized nanoparticles land on it. Multiple mechanical and optical resonant signals of the disk are tracked simultaneously, providing access to several pieces of physical information about the landing analyte in real time. Thanks to a fast camera registering the time and position of landing, these signals can be employed to weight each nanoparticle with precision. Sources of error and deviation are discussed and modeled, indicating a path to evaluate the elasticity of the nanoparticles on top of their mere mass. The device is optimized for the future investigation of biological particles in the high megadalton range, such as large viruses.


Assuntos
Nanopartículas
4.
Phys Rev Lett ; 126(6): 067404, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635707

RESUMO

We study two-dimensional excitons confined in a lattice potential, for high fillings of the lattice sites. We show that a quasicondensate is possibly formed for small values of the lattice depth, but for larger ones the critical phase-space density for quasicondensation rapidly exceeds our experimental reach, due to an increase of the exciton effective mass. On the other hand, in the regime of a deep lattice potential where excitons are strongly localized at the lattice sites, we show that an array of phase-independent quasicondensates, different from a Mott insulator, is realized.

5.
Nat Commun ; 13(1): 6462, 2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309523

RESUMO

Tracking the evolution of an individual nanodroplet of liquid in real-time remains an outstanding challenge. Here a miniature optomechanical resonator detects a single nanodroplet landing on a surface and measures its subsequent evaporation down to a volume of twenty attoliters. The ultra-high mechanical frequency and sensitivity of the device enable a time resolution below the millisecond, sufficient to resolve the fast evaporation dynamics under ambient conditions. Using the device dual optical and mechanical capability, we determine the evaporation in the first ten milliseconds to occur at constant contact radius with a dynamics ruled by the mere Kelvin effect, producing evaporation despite a saturated surrounding gas. Over the following hundred of milliseconds, the droplet further shrinks while being accompanied by the spreading of an underlying puddle. In the final steady-state after evaporation, an extended thin liquid film is stabilized on the surface. Our optomechanical technique opens the unique possibility of monitoring all these stages in real-time.

6.
Nanoscale ; 14(35): 12692-12702, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993375

RESUMO

We present a bias-controlled spin-filtering mechanism in spin-valves including a hybrid organic chain/graphene interface. Wet growth conditions of oligomeric molecular chains would usually lead, during standard CMOS-compatible fabrication processes, to the quenching of spintronics properties of metallic spin sources due to oxidation. We demonstrate by X-ray photoelectron spectroscopy that the use of a protective graphene layer fully preserves the metallic character of the ferromagnetic surface and thus its capability to deliver spin polarized currents. We focus here on a small aromatic chain of controllable lengths, formed by nitrobenzene monomers and derived from the commercial 4-nitrobenzene diazonium tetrafluoroborate, covalently attached to the graphene passivated spin sources thanks to electroreduction. A unique bias dependent switch of the spin signal is then observed in complete spin valve devices, from minority to majority spin carriers filtering. First-principles calculations are used to highlight the key role played by the spin-dependent hybridization of electronic states present at the different interfaces. Our work is a first step towards the exploration of spin transport using different functional molecular chains. It opens the perspective of atomic tailoring of magnetic junction devices towards spin and quantum transport control, thanks to the flexibility of ambient electrochemical surface functionalization processes.

7.
J Phys Chem Lett ; 12(21): 5123-5131, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34029086

RESUMO

We bring fresh insight into the ensemble properties of PbS colloidal quantum dots with a critical review of the literature on semiconductors followed by systematic comparisons between steady-state photocurrent and photoluminescence measurements. Our experiments, performed with sufficiently low powers to neglect nonlinear effects, indicate that the photoluminescence spectra have no other noticeable contribution beside the radiative recombination of thermalized photocarriers (i.e., photocarriers in thermodynamic quasi-equilibrium). A phenomenological model based on the local Kirchhoff law is proposed that makes it possible to identify the nature of the thermalized photocarriers and to extract their temperatures from the measurements. Two regimes are observed: For highly compact assemblies of PbS quantum dots stripped from organic ligands, the thermalization concerns photocarriers distributed over a wide energy range. With PbS quantum dots cross-linked with 1,2-ethanedithiol or longer organic ligand chains, the thermalization concerns solely the fundamental exciton and can quantitatively explain all the observations, including the precise Stokes shift between the absorbance and luminescence maxima.

8.
Micromachines (Basel) ; 11(2)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102241

RESUMO

Due to adjustable modal birefringence, suspended AlGaAs optical waveguides with submicron transverse sections can support phase-matched frequency mixing in the whole material transparency range, even close to the material bandgap, by tuning the width-to-height ratio. Furthermore, their single-pass conversion efficiency is potentially huge, thanks to the extreme confinement of the interacting modes in the highly nonlinear and high-refractive-index core, with scattering losses lower than in selectively oxidized or quasi-phase-matched AlGaAs waveguides. Here we compare the performances of two types of suspended waveguides made of this material, designed for second-harmonic generation (SHG) in the telecom range: (a) a nanowire suspended in air by lateral tethers and (b) an ultrathin nanorib, made of a strip lying on a suspended membrane of the same material. Both devices have been fabricated from a 123 nm thick AlGaAs epitaxial layer and tested in terms of SHG efficiency, injection and propagation losses. Our results point out that the nanorib waveguide, which benefits from a far better mechanical robustness, performs comparably to the fully suspended nanowire and is well-suited for liquid sensing applications.

9.
Sci Adv ; 6(31): eaba5494, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32789172

RESUMO

Transporting quantum information such as the spin information over micrometric or even millimetric distances is a strong requirement for the next-generation electronic circuits such as low-voltage spin-logic devices. This crucial step of transportation remains delicate in nontopologically protected systems because of the volatile nature of spin states. Here, a beneficial combination of different phenomena is used to approach this sought-after milestone for the beyond-Complementary Metal Oxide Semiconductor (CMOS) technology roadmap. First, a strongly spin-polarized charge current is injected using highly spin-polarized hybridized states emerging at the complex ferromagnetic metal/molecule interfaces. Second, the spin information is brought toward the conducting inner shells of a multiwall carbon nanotube used as a confined nanoguide benefiting from both weak spin-orbit and hyperfine interactions. The spin information is finally electrically converted because of a strong magnetoresistive effect. The experimental results are also supported by calculations qualitatively revealing exceptional spin transport properties of this system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA