Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 771, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932332

RESUMO

Global change is predicted to induce shifts in anuran acoustic behavior, which can be studied through passive acoustic monitoring (PAM). Understanding changes in calling behavior requires automatic identification of anuran species, which is challenging due to the particular characteristics of neotropical soundscapes. In this paper, we introduce a large-scale multi-species dataset of anuran amphibians calls recorded by PAM, that comprises 27 hours of expert annotations for 42 different species from two Brazilian biomes. We provide open access to the dataset, including the raw recordings, experimental setup code, and a benchmark with a baseline model of the fine-grained categorization problem. Additionally, we highlight the challenges of the dataset to encourage machine learning researchers to solve the problem of anuran call identification towards conservation policy. All our experiments and resources have been made available at https://soundclim.github.io/anuraweb/ .


Assuntos
Anuros , Vocalização Animal , Animais , Acústica , Ecossistema
2.
Biol Rev Camb Philos Soc ; 97(6): 2209-2236, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35978471

RESUMO

As biodiversity decreases worldwide, the development of effective techniques to track changes in ecological communities becomes an urgent challenge. Together with other emerging methods in ecology, acoustic indices are increasingly being used as novel tools for rapid biodiversity assessment. These indices are based on mathematical formulae that summarise the acoustic features of audio samples, with the aim of extracting meaningful ecological information from soundscapes. However, the application of this automated method has revealed conflicting results across the literature, with conceptual and empirical controversies regarding its primary assumption: a correlation between acoustic and biological diversity. After more than a decade of research, we still lack a statistically informed synthesis of the power of acoustic indices that elucidates whether they effectively function as proxies for biological diversity. Here, we reviewed studies testing the relationship between diversity metrics (species abundance, species richness, species diversity, abundance of sounds, and diversity of sounds) and the 11 most commonly used acoustic indices. From 34 studies, we extracted 364 effect sizes that quantified the magnitude of the direct link between acoustic and biological estimates and conducted a meta-analysis. Overall, acoustic indices had a moderate positive relationship with the diversity metrics (r = 0.33, CI [0.23, 0.43]), and showed an inconsistent performance, with highly variable effect sizes both within and among studies. Over time, studies have been increasingly disregarding the validation of the acoustic estimates and those examining this link have been progressively reporting smaller effect sizes. Some of the studied indices [acoustic entropy index (H), normalised difference soundscape index (NDSI), and acoustic complexity index (ACI)] performed better in retrieving biological information, with abundance of sounds (number of sounds from identified or unidentified species) being the best estimated diversity facet of local communities. We found no effect of the type of monitored environment (terrestrial versus aquatic) and the procedure for extracting biological information (acoustic versus non-acoustic) on the performance of acoustic indices, suggesting certain potential to generalise their application across research contexts. We also identified common statistical issues and knowledge gaps that remain to be addressed in future research, such as a high rate of pseudoreplication and multiple unexplored combinations of metrics, taxa, and regions. Our findings confirm the limitations of acoustic indices to efficiently quantify alpha biodiversity and highlight that caution is necessary when using them as surrogates of diversity metrics, especially if employed as single predictors. Although these tools are able partially to capture changes in diversity metrics, endorsing to some extent the rationale behind acoustic indices and suggesting them as promising bases for future developments, they are far from being direct proxies for biodiversity. To guide more efficient use and future research, we review their principal theoretical and practical shortcomings, as well as prospects and challenges of acoustic indices in biodiversity assessment. Altogether, we provide the first comprehensive and statistically based overview on the relation between acoustic indices and biodiversity and pave the way for a more standardised and informed application for biodiversity monitoring.


Assuntos
Acústica , Biodiversidade
3.
Ecology ; 102(7): e03380, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33937979

RESUMO

Acoustic signaling is key in mediating mate choice, which directly impacts individual fitness. Because background noise and habitat structure can impair signal transmission, the acoustic space of mixed-species assemblages has long been hypothesized to reflect selective pressures against signal interference and degradation. However, other potential drivers that received far less attention can drive similar outputs on the acoustic space. Phylogenetic niche conservatism and allometric constraints may also modulate species acoustic features, and the acoustic space of communities could be a side-effect of ecological assembly processes involving other traits (e.g., environmental filtering). Additionally, the acoustic space can also reflect the sorting of species relying on public information through extended communication networks. Using an integrative approach, we revisit the potential drivers of the acoustic space by addressing the distribution of acoustic traits, body size, and phylogenetic relatedness in tropical anuran assemblages across gradients of environmental heterogeneity in the Pantanal wetlands. We found the overall acoustic space to be aggregated compared with null expectations, even when accounting for confounding effects of body size. Across assemblages, acoustic and phylogenetic differences were positively related, while acoustic and body size similarities were negatively related, although to a minor extent. We suggest that acoustic partitioning, acoustic adaptation, and allometric constraints play a minor role in shaping the acoustic output of tropical anuran assemblages and that phylogenetic niche conservatism and public information use would influence between-assemblage variation. Our findings highlight an overlooked multivariate nature of the acoustic dimension and underscore the importance of including the ecological context of communities to understand drivers of the acoustic space.


Assuntos
Ecossistema , Áreas Alagadas , Acústica , Animais , Anuros , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA