Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1847(1): 69-78, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25223589

RESUMO

This review discusses the application of time-resolved vibrational spectroscopies to the studies of carotenoids in photosynthesis. The focus is on the ultrafast time regime and the study of photophysics and photochemistry of carotenoids by femtosecond time-resolved stimulated Raman and four-wave mixing spectroscopies. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.


Assuntos
Carotenoides/química , Carotenoides/metabolismo , Fotossíntese/fisiologia , Análise Espectral/métodos , Vibração
2.
Photosynth Res ; 124(1): 77-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680581

RESUMO

Absorption and Raman spectra of spheroidene dissolved in various organic solvents and bound to peripheral light-harvesting LH2 complexes from photosynthetic purple bacteria Rhodobacter (Rba.) sphaeroides 2.4.1 were measured. The results showed that the peak energies of absorption and C-C and C=C stretching Raman lines are linearly proportional to the polarizability of solvents, as has already been reported. When comparing these results with those measured on LH2 complexes, it was confirmed that spheroidene is surrounded by a media with high polarizability. However, the change in the spectral width of the Raman lines, which reflect vibrational decay time, cannot be explained simply by a similar dependence of solvent polarizability. The experimental results were analyzed using a potential theoretical model. Consequently, a systematic change in the Raman line widths in the ground state can be satisfactorily explained as a function of the viscosity of the surrounding media. Even when the absorption peaks appear at the same energy, the vibrational decay time of spheroidene in the LH2 complexes is approximately 15-20 % slower than that in organic solvents.


Assuntos
Carotenoides/metabolismo , Elétrons , Meio Ambiente , Vibração , Solventes , Análise Espectral Raman , Termodinâmica
3.
Photosynth Res ; 121(1): 61-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24676808

RESUMO

Fucoxanthin, containing a carbonyl group in conjugation with its polyene backbone, is a naturally occurring pigment in marine organisms and is essential to the photosynthetic light-harvesting function in brown alga and diatom. Fucoxanthin exhibits optical characteristics attributed to an intramolecular charge transfer (ICT) state that arises in polar environments due to the presence of the carbonyl group. In this study, we report the spectroscopic properties of fucoxanthin in methanol (polar and protic solvent) observed by femtosecond pump-probe measurements in the near-infrared region, where transient absorption associated with the optically allowed S2 (1(1)B u (+) ) state and stimulated emission from the strongly coupled S1/ICT state were observed following one-photon excitation to the S2 state. The results showed that the amplitude of the stimulated emission of the S1/ICT state increased with decreasing excitation energy, demonstrating that the fucoxanthin form associated with the lower energy of the steady-state absorption exhibits stronger ICT character.


Assuntos
Carotenoides/metabolismo , Análise Espectral/métodos , Xantofilas/metabolismo
4.
J Phys Chem B ; 128(23): 5623-5629, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38833602

RESUMO

The versatile functions of carotenoids in biological systems are associated with the extended π-electron conjugation system. Strong visible absorption resulting from the optically allowed S2 (1Bu+) state and the low-lying optically forbidden S1 (2Ag-) state examined. Carotenoids also exhibit an absorption band in the ultraviolet-B region; however, the origin of this band (hereafter referred to as Suv state) is not well characterized. The Suv state is a candidate for the destination level of the well-known S1 → Sn transient absorption; however, an obvious energy mismatch has been observed. In this study, we examined the steady-state and picosecond transient absorption spectra of lycopene in various solvents. The Suv absorption of carotenoids with diverse conjugation lengths was also examined. The dependence of the energies on solvent polarizability and conjugation length revealed that both Suv and Sn are the "second" Bu+ state. The absorption spectrum for lycopene at 200 K revealed an additional vibrational band, which may be the vibrational origin of the S0 → Suv band. Considering the slow vibrational relaxation of the 2Ag- state, the S1 → Sn transition may represent the 2Ag- (v = 1) → 2Bu+ (v = 0) transition, and the energetic contradiction can be resolved.

5.
J Chem Phys ; 139(3): 034311, 2013 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-23883031

RESUMO

Ultrafast excited-state dynamics of the photosynthetic pigment (Mg-)bacteriochlorophyll a and its Zn-substituted form were investigated by steady-state absorption∕fluorescence and femtosecond pump-probe spectroscopic measurements. The obtained steady-state absorption and fluorescence spectra of bacteriochlorophyll a in solution showed that the central metal compound significantly affects the energy of the Qx state, but has almost no effect on the Qy state. Photo-induced absorption spectra were recorded upon excitation of Mg- and Zn-bacteriochlorophyll a into either their Qx or Qy state. By comparing the kinetic traces of transient absorption, ground-state beaching, and stimulated emission after excitation to the Qx or Qy state, we showed that the Qx state was substantially incorporated in the ultrafast excited-state dynamics of bacteriochlorophyll a. Based on these observations, the lifetime of the Qx state was determined to be 50 and 70 fs for Mg- and Zn-bacteriochlorophyll a, respectively, indicating that the lifetime was influenced by the central metal atom due to the change of the energy gap between the Qx and Qy states.


Assuntos
Bacterioclorofila A/química , Magnésio/química , Fenômenos Ópticos , Zinco/química , Absorção , Cinética , Processos Fotoquímicos , Espectrometria de Fluorescência
6.
J Chem Phys ; 137(6): 064505, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22897291

RESUMO

Ultrafast excited state dynamics of spirilloxanthin in solution and bound to the light-harvesting core antenna complexes from Rhodospirillum rubrum S1 were investigated by means of femtosecond pump-probe spectroscopic measurements. The previously proposed S∗ state of spirilloxanthin was clearly observed both in solution and bound to the light-harvesting core antenna complexes, while the lowest triplet excited state appeared only with spirilloxanthin bound to the protein complexes. Ultrafast formation of triplet spirilloxanthin bound to the protein complexes was observed upon excitation of either spirilloxanthin or bacteriochlorophyll-a. The anomalous reaction of the ultrafast triplet formation is discussed in terms of ultrafast energy transfer between spirilloxanthin and bacteriochlorophyll-a.


Assuntos
Proteínas de Bactérias/química , Soluções/química , Transferência de Energia , Cinética , Fotossíntese , Rhodospirillum rubrum/química , Xantofilas/química
7.
Phys Chem Chem Phys ; 13(22): 10762-70, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21552626

RESUMO

Carotenoids containing a carbonyl group in conjugation with their polyene backbone are naturally-occurring pigments in marine organisms and are essential to the photosynthetic light-harvesting function in aquatic algae. These carotenoids exhibit spectral characteristics attributed to an intramolecular charge transfer (ICT) state that arise in polar solvents due to the presence of the carbonyl group. Here, we report the spectroscopic properties of the carbonyl carotenoid fucoxanthin in polar (methanol) and nonpolar (cyclohexane) solvents studied by steady-state absorption and femtosecond pump-probe measurements. Transient absorption associated with the optically forbidden S(1) (2(1)A) state and/or the ICT state were observed following one-photon excitation to the optically allowed S(2) (1(1)B) state in methanol. The transient absorption measurements carried out in methanol showed that the ratio of the ICT-to-S(1) state formation increased with decreasing excitation energy. We also showed that the ICT character was clearly visible in the steady-state absorption in methanol based on a Franck-Condon analysis. The results suggest that two spectroscopic forms of fucoxanthin, blue and red, exist in the polar environment.


Assuntos
Xantofilas/química , Transferência de Energia , Simulação de Dinâmica Molecular
8.
Phys Rev Lett ; 103(18): 187402, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19905831

RESUMO

Bleaching probe spectroscopy performed for regioregular poly(3-hexylthiophene) diodes reveals that coexistent morphological phases determine the conducting and optical properties of conjugated polymer films. Photoinduced absorption measurements demonstrate that exciton migration occurs from lamella aggregates to morphological sites consisting of quasiuncoupled chains and that the latter sites determine steady-state photophysical properties. Spectroscopy synchronized with diode operation reveals that the morphological locations of injected carriers in polymer diodes vary with the applied bias.

9.
J Chem Phys ; 130(23): 234909, 2009 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-19548758

RESUMO

Temperature dependences (4-300 K) of photoluminescence (PL) and absorption spectra of 16-mer oligothiophene (16 T) extremely diluted in polypropylene (PP) have been investigated in order to clarify temperature effects on quasi-isolated conjugated polymers. The PL and absorption spectra are found to blueshift with increasing temperature. The reason for the blueshift is discussed by comparing models based on the refractive index of the solvent (PP) and on the thermal conformational change of 16 T. The blueshift is concluded to result from the thermal conformational change. Time-resolved PL spectra show a redshift of PL band following photoexcitation (spectral migration). The amount of the migration is shown to increase with increasing temperature. The increased migration is concluded to be due to the thermal conformational change. The temperature dependence of the effective conjugation length (ECL) of 16 T is calculated for the absorption and PL transitions. The calculation suggests that ECL is reduced at room temperature to two-thirds of the intrinsic chain length. The activation energy of the conformational change is estimated to be 22.4 meV from the temperature dependence of ECL. We demonstrate that the steady-state PL spectra are well reproduced by simple Franck-Condon analyses using a single Huang-Ryes factor over a wide temperature range. The analyses reveal features of temperature dependence in important spectral parameters such as the Stokes shift, linewidth, and Huang-Ryes factor.


Assuntos
Polipropilenos/química , Temperatura , Tiofenos/química , Luminescência , Espectrofotometria Ultravioleta/métodos
10.
J Phys Chem B ; 111(43): 12389-94, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17927236

RESUMO

The photoluminescence (PL) dynamics of poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) blended in host polymer (polypropylene, PP) matrix as well as that in the neat film has been studied. The concentration of MEH-PPV in the PP blend is designed to be fairly low (0.01 wt %) in order to observe the intrinsic intrachain PL property of MEH-PPV in the solid state. The steady-state 0-0 PL band of the blend sample shows a blue-shift of 0.12 eV with respect to that of the neat film of MEH-PPV. The PL-excitation (PLE) spectra of the blend sample exhibit definite vibronic structure, and hence we can determine the magnitude of the Stokes shift as 0.06 eV. The blend sample shows a single-exponential PL decay at 4 K with a time constant of 850 ps. We emphasize that this single-exponential-type PL decay is an intrinsic property of the intrachain PL species. Time-resolved PL measurements confirm dynamical red-shift of the PL band in the neat film, whereas this trend is not found in the case of the PP blend. These observations indicate that the energy transfer between finite segments, which can cause exciton migration, is much less efficient within the isolated MEH-PPV polymer chain compared to the case of the interchain transfer. The time-resolved measurements further demonstrate that the Stokes shift identified in the blend sample takes place at the early stage within 50 ps following photoexcitation. We attribute this Stokes shift to the rapid increase of the planarity of the MEH-PPV chain caused by the torsion of some constituent phenyl rings following photoexcitation. Finally, based on an argument on the different magnitudes of Stokes shift between the blend sample and the neat film, we conclude that the PL of MEH-PPV in the neat film predominantly occurs at the site of interchain excitations via the interchain migration of excitons.

12.
J Phys Chem B ; 120(5): 951-6, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26800035

RESUMO

Photosynthetic light-harvesting apparatus efficiently capture sunlight and transfer the energy to reaction centers, while they safely dissipate excess energy to surrounding environments for a protection of their organisms. In this study, we performed pump-probe spectroscopic measurements with a temporal window ranging from femtosecond to submillisecond on the purple bacterial antenna complex LH2 from Rhodobacter sphaeroides 2.4.1 to clarify its photoprotection functions. The observed excited state dynamics in the time range from subnanosecond to microsecond exhibits that the triplet-triplet excitation energy transfer from bacteriochlorophyll a to carotenoid takes place with a time constant of 16.7 ns. Furthermore, ultrafast spectroscopic data suggests that a molecular assembly of bacteriochlorophyll a in LH2 efficiently suppresses a generation of triple bacteriochlorophyll a.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Luz , Fotossíntese , Proteobactérias/metabolismo , Rhodobacter sphaeroides/metabolismo
13.
J Phys Chem Lett ; 5(5): 792-7, 2014 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-26274069

RESUMO

Fucoxanthin is an essential pigment for the highly efficient light-harvesting function of marine algal photosynthesis. It exhibits excited state properties attributed to intramolecular charge transfer (ICT) in polar environments due to the presence of the carbonyl group in its polyene backbone. This report describes the excited state properties of fucoxanthin homologues with four to eight conjugated double bonds in various solvents using the femtosecond pump-probe technique. The results clarified that fucoxanthin homologues with longer polyene chains did not possess pronounced ICT spectroscopic signatures, while the shorter fucoxanthin homologues had a strong ICT character, even in a nonpolar solvent. On the basis of the observations, we quantitatively correlated the ICT character in the excited state to the conjugated polyene chain lengths of fucoxanthin molecules.

14.
Photosynth Res ; 95(2-3): 309-16, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17926140

RESUMO

Nonlinear optical responses of bacteriochlorophyll a (BChl a) were investigated by means of the three-pulse four-wave mixing (FWM) technique under the resonant excitation into the Q ( y ) band. The experimental results are explained by a theoretical model calculation including the Brownian oscillation mode of the solvent. We have determined the spectral density, which is the most important function with which to calculate optical signals. The linear absorption spectrum can be reproduced fairly well when the vibronic oscillation modes of the solvent together with those of BChl a are properly taken into consideration. The FWM signal was also calculated using the spectral density. It was found that a simple two-level model could not explain the experimental result. The effect of the higher-order interactions is discussed.


Assuntos
Bacterioclorofila A/química , Modelos Teóricos , Rhodobacter sphaeroides/química
15.
Photosynth Res ; 95(2-3): 299-308, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17929192

RESUMO

The third-order nonlinear optical responses of beta-carotene and its homologue having a conjugation-double bond n = 15 have been investigated using sub-20 fs ultra-short optical pulses in order to clarify the dissipation processes of excess energy. Using the four-wave mixing spectroscopy, we observed a clear coherent oscillation with a period of a few tens of femtoseconds. The spectral density of these molecules was estimated that allowed the theoretical linear and nonlinear optical signals to be directly compared with the experimental data. Calculations based on the Brownian oscillator model were performed under the impulsive excitation limit. We show that the memory of the vibronic coherence generated upon the excitation into the S(2) state is lost via the relaxation process including the S(1) state. The vibronic decoherence lifetime of the system was estimated to be 1 ps, which is about 5 times larger than the life time of the S(2) state ( approximately 150 fs) determined in previous studies. The role of coherence and the efficient energy transfer in the light-harvesting antenna complexes are discussed.


Assuntos
beta Caroteno/química , Análise Espectral Raman
16.
Photosynth Res ; 95(2-3): 327-37, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-17926141

RESUMO

Typical purple bacterial photosynthetic units consist of supra-molecular arrays of peripheral (LH2) and core (LH1-RC) antenna complexes. Recent atomic force microscopy pictures of photosynthetic units in intact membranes have revealed that the architecture of these units is variable (Scheuring et al. (2005) Biochim Bhiophys Acta 1712:109-127). In this study, we describe methods for the construction of heterologous photosynthetic units in lipid-bilayers from mixtures of purified LH2 (from Rhodopseudomonas acidophila) and LH1-RC (from Rhodopseudomonas viridis) core complexes. The architecture of these reconstituted photosynthetic units can be varied by controlling ratio of added LH2 to core complexes. The arrangement of the complexes was visualized by electron-microscopy in combination with Fourier analysis. The regular trigonal array of the core complexes seen in the native photosynthetic membrane could be regenerated in the reconstituted membranes by temperature cycling. In the presence of added LH2 complexes, this trigonal symmetry was replaced with orthorhombic symmetry. The small lattice lengths for the latter suggest that the constituent unit of the orthorhombic lattice is the LH2. Fluorescence and fluorescence-excitation spectroscopy was applied to the set of the reconstituted membranes prepared with various proportions of LH2 to core complexes. Remarkably, even though the LH2 complexes contain bacteriochlorophyll a, and the core complexes contain bacteriochlorophyll b, it was possible to demonstrate energy transfer from LH2 to the core complexes. These experiments provide a first step along the path toward investigating how changing the architecture of purple bacterial photosynthetic units affects the overall efficiency of light-harvesting.


Assuntos
Bacterioclorofila A/metabolismo , Bacterioclorofilas/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Fotossíntese , Rodopseudomonas/metabolismo , Transferência de Energia , Microscopia Eletrônica de Transmissão , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA