Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36980717

RESUMO

Circulating tumor cells (CTCs), a population of cancer cells that represent the seeds of metastatic nodules, are a promising model system for studying metastasis. However, the expansion of patient-derived CTCs ex vivo is challenging and dependent on the collection of high numbers of CTCs, which are ultra-rare. Here we report the development of a combined CTC and cultured CTC-derived xenograft (CDX) platform for expanding and studying patient-derived CTCs from metastatic colon, lung, and pancreatic cancers. The propagated CTCs yielded a highly aggressive population of cells that could be used to routinely and robustly establish primary tumors and metastatic lesions in CDXs. Differential gene analysis of the resultant CTC models emphasized a role for NF-κB, EMT, and TGFß signaling as pan-cancer signaling pathways involved in metastasis. Furthermore, metastatic CTCs were identified through a prospective five-gene signature (BCAR1, COL1A1, IGSF3, RRAD, and TFPI2). Whole-exome sequencing of CDX models and metastases further identified mutations in constitutive photomorphogenesis protein 1 (COP1) as a potential driver of metastasis. These findings illustrate the utility of the combined patient-derived CTC model and provide a glimpse of the promise of CTCs in identifying drivers of cancer metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA