Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141897

RESUMO

The skin is an important physiological barrier against external stimuli, such as ultraviolet radiation (UV), xenobiotics, and bacteria. Dermal inflammatory reactions are associated with various skin disorders, including chemical-induced irritation and atopic dermatitis. Modulation of skin inflammatory response is a therapeutic strategy for skin diseases. Here, we synthesized chrysin-derivatives and identified the most potent derivative of Compound 6 (CPD 6). We evaluated its anti-inflammatory effects in vitro cells of macrophages and keratinocytes, and in vivo dermatitis mouse models. In murine macrophages stimulated by lipopolysaccharide (LPS), CPD 6 significantly attenuated the release of inflammatory mediators such as nitric oxide (NO) (IC50 for NO inhibition: 3.613 µM) and other cytokines. In cultured human keratinocytes, CPD 6 significantly attenuated the release of inflammatory cytokines induced by the combination of IFN-γ and TNF-α, UV irradiation, or chemical irritant stimulation. CPD 6 inhibited NFκB and JAK2/STAT1 signaling pathways, and activated Nrf2/HO-1 signaling. In vivo relevancy of anti-inflammatory effects of CPD 6 was observed in acute and chronic skin inflammation models in mice. CPD 6 showed significant anti-inflammatory properties both in vitro cells and in vivo dermatitis animal models, mediated by the inhibition of the NFκB and JAK2-STAT1 pathways and activation of Nrf2/HO-1 signaling. We propose that the novel chrysin-derivative CPD 6 may be a potential therapeutic agent for skin inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Dermatite/tratamento farmacológico , Fármacos Dermatológicos/farmacologia , Flavonoides/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Fármacos Dermatológicos/química , Fármacos Dermatológicos/uso terapêutico , Heme Oxigenase-1/metabolismo , Humanos , Janus Quinase 2/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Células RAW 264.7 , Fator de Transcrição STAT1/metabolismo
2.
Adv Sci (Weinh) ; : e2400398, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958553

RESUMO

The androgen receptor (AR) is an attractive target for treating prostate cancer, considering its role in the development and progression of localized and metastatic prostate cancer. The high global mortality burden of prostate cancer, despite medical treatments such as androgen deprivation or AR antagonist therapy, highlights the need to explore alternative strategies. One strategy involves the use of heterobifunctional degraders, also known as proteolysis-targeting chimeras, which are novel small-molecule therapeutics that inhibit amplified or mutated targets. Here, the study reports a novel cereblon-based AR degrader, UBX-390, and demonstrates its superior activity over established AR degraders, such as ARV-110 or ARCC-4, in prostate cancer cells under short- and long-term treatment conditions. UBX-390 suppresses chromatin binding and gene expression of AR and demonstrates substantial efficacy in the degradation of AR mutants in patients with treatment-resistant prostate cancer. UBX-390 is presented as an optimized AR degrader with remarkable potential for treating castration-resistant prostate cancer.

3.
Blood Adv ; 7(1): 92-105, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269842

RESUMO

Bruton tyrosine kinase (BTK) is an important signaling hub that activates the B-cell receptor (BCR) signaling cascade. BCR activation can contribute to the growth and survival of B-cell lymphoma or leukemia. The inhibition of the BCR signaling pathway is critical for blocking downstream events and treating B-cell lymphomas. Herein, we report potent and orally available proteolysis-targeting chimeras (PROTACs) that target BTK to inactivate BCR signaling. Of the PROTACs tested, UBX-382 showed superior degradation activity for wild-type (WT) and mutant BTK proteins in a single-digit nanomolar range of half-maximal degradation concentration in diffuse large B-cell lymphoma cell line. UBX-382 was effective on 7 out of 8 known BTK mutants in in vitro experiments and was highly effective in inhibiting tumor growth in murine xenograft models harboring WT or C481S mutant BTK-expressing TMD-8 cells over ibrutinib, ARQ-531, and MT-802. Remarkably, oral dosing of UBX-382 for <2 weeks led to complete tumor regression in 3 and 10 mg/kg groups in murine xenograft models. UBX-382 also provoked the cell type-dependent and selective degradation of cereblon neosubstrates in various hematological cancer cells. These results suggest that UBX-382 treatment is a promising therapeutic strategy for B-cell-related blood cancers with improved efficacy and diverse applicability.


Assuntos
Linfoma Difuso de Grandes Células B , Pirimidinas , Humanos , Animais , Camundongos , Tirosina Quinase da Agamaglobulinemia , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Transdução de Sinais , Modelos Animais de Doenças , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética
4.
Acta Pharm Sin B ; 10(12): 2362-2373, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33354507

RESUMO

The short release half-life of carbon monoxide (CO) is a major obstacle to the effective therapeutic use of carbon monoxide-releasing molecule-2 (CORM-2). The potential of CORM-2-entrapped ultradeformable liposomes (CORM-2-UDLs) to enhance the release half-life of CO and alleviate skin inflammation was investigated in the present study. CORM-2-UDLs were prepared by using soy phosphatidylcholine to form lipid bilayers and Tween 80 as an edge activator. The deformability of CORM-2-UDLs was measured and compared with that of conventional liposomes by passing formulations through a filter device at a constant pressure. The release profile of CO from CORM-2-UDLs was evaluated by myoglobin assay. In vitro and in vivo anti-inflammatory effects of CORM-2-UDLs were assessed in lipopolysaccharide-stimulated macrophages and TPA-induced ear edema model, respectively. The deformability of the optimized CORM-2-UDLs was 2.3 times higher than conventional liposomes. CORM-2-UDLs significantly prolonged the release half-life of CO from 30 s in a CORM-2 solution to 21.6 min. CORM-2-UDLs demonstrated in vitro anti-inflammatory activity by decreasing nitrite production and pro-inflammatory cytokine levels. Furthermore, CORM-2-UDLs successfully ameliorated skin inflammation by reducing ear edema, pathological scores, neutrophil accumulation, and inflammatory cytokines expression. The results demonstrate that CORM-2-UDLs could be used as promising therapeutics against acute skin inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA