Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(18): e2204621120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098055

RESUMO

The unique cancer-associated immunosuppression in brain, combined with a paucity of infiltrating T cells, contributes to the low response rate and poor treatment outcomes of T cell-based immunotherapy for patients diagnosed with glioblastoma multiforme (GBM). Here, we report on a self-assembling paclitaxel (PTX) filament (PF) hydrogel that stimulates macrophage-mediated immune response for local treatment of recurrent glioblastoma. Our results suggest that aqueous PF solutions containing aCD47 can be directly deposited into the tumor resection cavity, enabling seamless hydrogel filling of the cavity and long-term release of both therapeutics. The PTX PFs elicit an immune-stimulating tumor microenvironment (TME) and thus sensitizes tumor to the aCD47-mediated blockade of the antiphagocytic "don't eat me" signal, which subsequently promotes tumor cell phagocytosis by macrophages and also triggers an antitumor T cell response. As adjuvant therapy after surgery, this aCD47/PF supramolecular hydrogel effectively suppresses primary brain tumor recurrence and prolongs overall survivals with minimal off-target side effects.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Paclitaxel , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Macrófagos Associados a Tumor/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Hidrogéis/uso terapêutico , Imunoterapia/métodos , Microambiente Tumoral , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico
2.
Cell Physiol Biochem ; 57(5): 331-344, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37724045

RESUMO

BACKGROUND/AIMS: Recombinant adeno-associated viruses (rAAV) are an important tool for lung targeted gene therapy. Substitution of tyrosine with phenylalanine residues (Y-F) in the capsid have been shown to protect the AAV vector from ubiquitin/proteasome degradation, increasing transduction efficiency. We tested the mutant Y733F-AAV8 vector for mucus diffusion, as well as the safety and efficacy of pigment epithelium-derived factor (PEDF) gene transfer to the lung. METHODS: For this purpose, Y733F-AAV8-PEDF (1010 viral genome) was administered intratracheally to C57BL/6 mice. Lung mechanics, morphometry, and inflammation were evaluated 7, 14, 21, and 28 days after injection. RESULTS: The tyrosine-mutant AAV8 vector was efficient at penetrating mucus in ex vivo assays and at transferring the gene to lung cells after in vivo instillation. Increased levels of transgene mRNA were observed 28 days after vector administration. Overexpression of PEDF did not affect in vivo lung parameters. CONCLUSION: These findings provide a basis for further development of Y733F-AAV8-based gene therapies for safe and effective delivery of PEDF, which has anti-angiogenic, anti-inflammatory and anti-fibrotic activities and might be a promising therapy for lung inflammatory disorders.


Assuntos
Proteínas do Olho , Técnicas de Transferência de Genes , Serpinas , Animais , Camundongos , Proteínas do Olho/genética , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/genética , Serpinas/genética
3.
Small ; 19(11): e2207278, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36651002

RESUMO

Drug delivery nanoparticles (NPs) based entirely on materials generally recognized as safe that provide widespread parenchymal distribution following intracranial administration via convection-enhanced delivery (CED) are introduced. Poly(lactic-co-glycolic acid) (PLGA) NPs are coated with various poloxamers, including F68, F98, or F127, via physical adsorption to render particle surfaces non-adhesive, thereby resisting interactions with brain extracellular matrix. F127-coated PLGA (F127/PLGA) NPs provide markedly greater distribution in healthy rat brains compared to uncoated NPs and widespread coverage in orthotopically-established brain tumors. Distribution analysis of variously-sized F127/PLGA NPs determines the average rat brain tissue porosity to be between 135 and 170 nm while revealing unprecedented brain coverage of larger F127/PLGA NPs with an aid of hydraulic pressure provided by CED. Importantly, F127/PLGA NPs can be lyophilized for long-term storage without compromising their ability to penetrate the brain tissue. Further, 65- and 200-nm F127/PLGA NPs lyophilized-reconstituted and administered in a moderately hyperosmolar infusate solution show further enhance particle dissemination in the brain via osmotically-driven enlargement of the brain tissue porosity. Combination of F127/PLGA NPs and osmotic tissue modulation provides a means with a clear regulatory path to maximize the brain distribution of large NPs that enable greater drug loading and prolong drug release.


Assuntos
Nanopartículas , Neoplasias , Ratos , Animais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico , Ácido Láctico , Portadores de Fármacos , Encéfalo , Tamanho da Partícula
4.
Mol Pharm ; 20(1): 750-757, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448927

RESUMO

Vaccine hesitancy and the occurrence of elusive variants necessitate further treatment options for coronavirus disease 2019 (COVID-19). Accumulated evidence indicates that clinically used hypertensive drugs, angiotensin receptor blockers (ARBs), may benefit patients by mitigating disease severity and/or viral propagation. However, current clinical formulations administered orally pose systemic safety concerns and likely require a very high dose to achieve the desired therapeutic window in the lung. To address these limitations, we have developed a nanosuspension formulation of an ARB, entirely based on clinically approved materials, for inhaled treatment of COVID-19. We confirmed in vitro that our formulation exhibits physiological stability, inherent drug activity, and inhibitory effect against SARV-CoV-2 replication. Our formulation also demonstrates excellent lung pharmacokinetics and acceptable tolerability in rodents and/or nonhuman primates following direct administration into the lung. Thus, we are currently pursuing clinical development of our formulation for its uses in patients with COVID-19 or other respiratory infections.


Assuntos
COVID-19 , Infecções Respiratórias , Animais , Antagonistas de Receptores de Angiotensina/farmacologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Telmisartan , Sistema Renina-Angiotensina/fisiologia , SARS-CoV-2 , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Infecções Respiratórias/tratamento farmacológico
5.
Thorax ; 77(8): 812-820, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34697091

RESUMO

INTRODUCTION: Inhaled gene therapy of muco-obstructive lung diseases requires a strategy to achieve therapeutically relevant gene transfer to airway epithelium covered by particularly dehydrated and condensed mucus gel layer. Here, we introduce a synthetic DNA-loaded mucus-penetrating particle (DNA-MPP) capable of providing safe, widespread and robust transgene expression in in vivo and in vitro models of muco-obstructive lung diseases. METHODS: We investigated the ability of DNA-MPP to mediate reporter and/or therapeutic transgene expression in lung airways of a transgenic mouse model of muco-obstructive lung diseases (ie, Scnn1b-Tg) and in air-liquid interface cultures of primary human bronchial epithelial cells harvested from an individual with cystic fibrosis. A plasmid designed to silence epithelial sodium channel (ENaC) hyperactivity, which causes airway surface dehydration and mucus stasis, was intratracheally administered via DNA-MPP to evaluate therapeutic effects in vivo with or without pretreatment with hypertonic saline, a clinically used mucus-rehydrating agent. RESULTS: DNA-MPP exhibited marked greater reporter transgene expression compared with a mucus-impermeable formulation in in vivo and in vitro models of muco-obstructive lung diseases. DNA-MPP carrying ENaC-silencing plasmids provided efficient downregulation of ENaC and reduction of mucus burden in the lungs of Scnn1b-Tg mice, and synergistic impacts on both gene transfer efficacy and therapeutic effects were achieved when DNA-MPP was adjuvanted with hypertonic saline. DISCUSSION: DNA-MPP constitutes one of the rare gene delivery systems providing therapeutically meaningful gene transfer efficacy in highly relevant in vivo and in vitro models of muco-obstructive lung diseases due to its unique ability to efficiently penetrate airway mucus.


Assuntos
Pneumopatias Obstrutivas , Nanopartículas , Animais , DNA , Terapia Genética , Humanos , Pulmão/metabolismo , Pneumopatias Obstrutivas/terapia , Camundongos , Muco/metabolismo
6.
Angew Chem Int Ed Engl ; 60(28): 15225-15229, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33855792

RESUMO

Inhaled gene therapy poses a unique potential of curing chronic lung diseases, which are currently managed primarily by symptomatic treatments. However, it has been challenging to achieve therapeutically relevant gene transfer efficacy in the lung due to the presence of numerous biological delivery barriers. Here, we introduce a simple approach that overcomes both extracellular and cellular barriers to enhance gene transfer efficacy in the lung in vivo. We endowed tetra(piperazino)fullerene epoxide (TPFE)-based nanoparticles with non-adhesive surface polyethylene glycol (PEG) coatings, thereby enabling the nanoparticles to cross the airway mucus gel layer and avoid phagocytic uptake by alveolar macrophages. In parallel, we utilized a hypotonic vehicle to facilitate endocytic uptake of the PEGylated nanoparticles by lung parenchymal cells via the osmotically driven regulatory volume decrease (RVD) mechanism. We demonstrate that this two-pronged delivery strategy provides safe, wide-spread and high-level transgene expression in the lungs of both healthy mice and mice with chronic lung diseases characterized by reinforced delivery barriers.


Assuntos
Compostos de Epóxi/química , Fulerenos/química , Técnicas de Transferência de Genes , Pneumopatias/terapia , Nanopartículas/química , Doença Crônica , Humanos , Pneumopatias/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(32): E6595-E6602, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28739953

RESUMO

Reports on drug delivery systems capable of overcoming multiple biological barriers are rare. We introduce a nanoparticle-based drug delivery technology capable of rapidly penetrating both lung tumor tissue and the mucus layer that protects airway tissues from nanoscale objects. Specifically, human ferritin heavy-chain nanocages (FTn) were functionalized with polyethylene glycol (PEG) in a unique manner that allows robust control over PEG location (nanoparticle surface only) and surface density. We varied PEG surface density and molecular weight to discover PEGylated FTn that rapidly penetrated both mucus barriers and tumor tissues in vitro and in vivo. Upon inhalation in mice, PEGylated FTn with optimized PEGylation rapidly penetrated the mucus gel layer and thus provided a uniform distribution throughout the airways. Subsequently, PEGylated FTn preferentially penetrated and distributed within orthotopic lung tumor tissue, and selectively entered cancer cells, in a transferrin receptor 1-dependent manner, which is up-regulated in most cancers. To test the potential therapeutic benefits, doxorubicin (DOX) was conjugated to PEGylated FTn via an acid-labile linker to facilitate intracellular release of DOX after cell entry. Inhalation of DOX-loaded PEGylated FTn led to 60% survival, compared with 10% survival in the group that inhaled DOX in solution at the maximally tolerated dose, in a murine model of malignant airway lung cancer. This approach may provide benefits as an adjuvant therapy combined with systemic chemo- or immunotherapy or as a stand-alone therapy for patients with tumors confined to the airways.


Assuntos
Apoferritinas , Doxorrubicina , Neoplasias Pulmonares , Nanoestruturas , Neoplasias Experimentais , Polietilenoglicóis , Mucosa Respiratória/metabolismo , Animais , Apoferritinas/química , Apoferritinas/farmacocinética , Apoferritinas/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Mucosa Respiratória/patologia
8.
Eur Respir J ; 54(2)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31164433

RESUMO

Perturbations in airway mucus properties contribute to lung function decline in patients with chronic obstructive pulmonary disease (COPD). While alterations in bulk mucus rheology have been widely explored, microscopic mucus properties that directly impact on the dynamics of microorganisms and immune cells in the COPD lungs are yet to be investigated.We hypothesised that a tightened mesh structure of spontaneously expectorated mucus (i.e. sputum) would contribute to increased COPD disease severity. Here, we investigated whether the mesh size of COPD sputum, quantified by muco-inert nanoparticle (MIP) diffusion, correlated with sputum composition and lung function measurements.The microstructure of COPD sputum was assessed based on the mean squared displacement (MSD) of variously sized MIPs measured by multiple particle tracking. MSD values were correlated with sputum composition and spirometry. In total, 33 samples collected from COPD or non-COPD individuals were analysed.We found that 100 nm MIPs differentiated microstructural features of COPD sputum. The mobility of MIPs was more hindered in sputum samples from patients with severe COPD, suggesting a tighter mucus mesh size. Specifically, MSD values inversely correlated with lung function.These findings suggest that sputum microstructure may serve as a novel risk factor for COPD progression and severity.


Assuntos
Nanopartículas/química , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/efeitos adversos , Escarro , Difusão , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Reologia , Fatores de Risco , Espirometria
9.
Small ; 15(49): e1903460, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31642183

RESUMO

Microbubble activation with focused ultrasound (FUS) facilitates the noninvasive and spatially-targeted delivery of systemically administered therapeutics across the blood-brain barrier (BBB). FUS also augments the penetration of nanoscale therapeutics through brain tissue; however, this secondary effect has not been leveraged. Here, 1 MHz FUS sequences that increase the volume of transfected brain tissue after convection-enhanced delivery of gene-vector "brain-penetrating" nanoparticles were first identified. Next, FUS preconditioning is applied prior to trans-BBB nanoparticle delivery, yielding up to a fivefold increase in subsequent transgene expression. Magnetic resonance imaging (MRI) analyses of tissue temperature and Ktrans confirm that augmented transfection occurs through modulation of parenchymal tissue with FUS. FUS preconditioning represents a simple and effective strategy for markedly improving the efficacy of gene vector nanoparticles in the central nervous system.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Ondas Ultrassônicas , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/metabolismo , Imageamento por Ressonância Magnética , Microbolhas , Temperatura
10.
Proc Natl Acad Sci U S A ; 112(28): 8720-5, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124127

RESUMO

Gene therapy has emerged as an alternative for the treatment of diseases refractory to conventional therapeutics. Synthetic nanoparticle-based gene delivery systems offer highly tunable platforms for the delivery of therapeutic genes. However, the inability to achieve sustained, high-level transgene expression in vivo presents a significant hurdle. The respiratory system, although readily accessible, remains a challenging target, as effective gene therapy mandates colloidal stability in physiological fluids and the ability to overcome biological barriers found in the lung. We formulated highly stable DNA nanoparticles based on state-of-the-art biodegradable polymers, poly(ß-amino esters) (PBAEs), possessing a dense corona of polyethylene glycol. We found that these nanoparticles efficiently penetrated the nanoporous and highly adhesive human mucus gel layer that constitutes a primary barrier to reaching the underlying epithelium. We also discovered that these PBAE-based mucus-penetrating DNA nanoparticles (PBAE-MPPs) provided uniform and high-level transgene expression throughout the mouse lungs, superior to several gold standard gene delivery systems. PBAE-MPPs achieved robust transgene expression over at least 4 mo following a single administration, and their transfection efficiency was not attenuated by repeated administrations, underscoring their clinical relevance. Importantly, PBAE-MPPs demonstrated a favorable safety profile with no signs of toxicity following intratracheal administration.


Assuntos
Fibrose Cística/terapia , DNA/uso terapêutico , Terapia Genética , Muco , Nanopartículas/uso terapêutico , Administração por Inalação , Animais , Camundongos
11.
Nano Lett ; 17(6): 3533-3542, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28511006

RESUMO

Therapies capable of decelerating, or perhaps even halting, neurodegeneration in Parkinson's disease (PD) remain elusive. Clinical trials of PD gene therapy testing the delivery of neurotrophic factors, such as the glial cell-line derived neurotrophic factor (GDNF), have been largely ineffective due to poor vector distribution throughout the diseased regions in the brain. In addition, current delivery strategies involve invasive procedures that obviate the inclusion of early stage patients who are most likely to benefit from GDNF-based gene therapy. Here, we introduce a two-pronged treatment strategy, composed of MR image-guided focused ultrasound (FUS) and brain-penetrating nanoparticles (BPN), that provides widespread but targeted GDNF transgene expression in the brain following systemic administration. MR image-guided FUS allows circulating gene vectors to partition into the brain tissue by noninvasive and transient opening of the blood-brain barrier (BBB) within the areas where FUS is applied. Once beyond the BBB, BPN provide widespread and uniform GDNF expression throughout the targeted brain tissue. After only a single treatment, our strategy led to therapeutically relevant levels of GDNF protein content in the FUS-targeted regions in the striatum of the 6-OHDA-induced rat model of PD, which lasted at least up to 10 weeks. Importantly, our strategy restored both dopamine levels and dopaminergic neuron density and reversed behavioral indicators of PD-associated motor dysfunction with no evidence of local or systemic toxicity. Our combinatorial approach overcomes limitations of current delivery strategies, thereby potentially providing a novel means to treat PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Doença de Parkinson/terapia , Animais , Transporte Biológico , Encéfalo/metabolismo , Dopamina/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Imageamento por Ressonância Magnética , Nanopartículas/química , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Tamanho da Partícula , Polietilenoglicóis/química , Polietilenoimina/química , Ratos , Ondas Ultrassônicas
12.
Mol Ther ; 24(12): 2043-2053, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27646604

RESUMO

Recent evidence suggests that the airway mucus gel layer may be impermeable to the viral and synthetic gene vectors used in past inhaled gene therapy clinical trials for diseases like cystic fibrosis. These findings support the logic that inhaled gene vectors that are incapable of penetrating the mucus barrier are unlikely to provide meaningful benefit to patients. In this review, we discuss the biochemical and biophysical features of mucus that contribute its barrier function, and how these barrier properties may be reinforced in patients with lung disease. We next review biophysical techniques used to assess the potential ability of gene vectors to penetrate airway mucus. Finally, we provide new data suggesting that fresh human airway mucus should be used to test the penetration rates of gene vectors. The physiological barrier properties of spontaneously expectorated CF sputum remained intact up to 24 hours after collection when refrigerated at 4 °C. Conversely, the barrier properties were significantly altered after freezing and thawing of sputum samples. Gene vectors capable of overcoming the airway mucus barrier hold promise as a means to provide the widespread gene transfer throughout the airway epithelium required to achieve meaningful patient outcomes in inhaled gene therapy clinical trials.


Assuntos
Terapia Genética , Pneumopatias/terapia , Muco/metabolismo , Escarro/metabolismo , Transporte Biológico , Vetores Genéticos/administração & dosagem , Humanos , Pneumopatias/genética
13.
Small ; 12(5): 678-85, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26680637

RESUMO

Successful gene therapy of neurological disorders is predicated on achieving widespread and uniform transgene expression throughout the affected disease area in the brain. However, conventional gene vectors preferentially travel through low-resistance perivascular spaces and/or are confined to the administration site even with the aid of a pressure-driven flow provided by convection-enhanced delivery. Biodegradable DNA nanoparticles offer a safe gene delivery platform devoid of adverse effects associated with virus-based or synthetic nonbiodegradable systems. Using a state-of-the-art biodegradable polymer, poly(ß-amino ester), colloidally stable sub-100 nm DNA nanoparticles are engineered with a nonadhesive polyethylene glycol corona that are able to avoid the adhesive and steric hindrances imposed by the extracellular matrix. Following convection enhanced delivery, these brain-penetrating nanoparticles are able to homogeneously distribute throughout the rodent striatum and mediate widespread and high-level transgene expression. These nanoparticles provide a biodegradable DNA nanoparticle platform enabling uniform transgene expression patterns in vivo and hold promise for the treatment of neurological diseases.


Assuntos
DNA/metabolismo , Técnicas de Transferência de Genes , Nanopartículas/química , Animais , Encéfalo/metabolismo , Convecção , Feminino , Nanopartículas/ultraestrutura , Polietilenoglicóis/química , Polímeros/química , Ratos Endogâmicos F344 , Distribuição Tecidual , Transgenes
14.
Mol Ther ; 22(8): 1484-1493, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24869933

RESUMO

Gene therapy has not yet improved cystic fibrosis (CF) patient lung function in human trials, despite promising preclinical studies. In the human CF lung, inhaled gene vectors must penetrate the viscoelastic secretions coating the airways to reach target cells in the underlying epithelium. We investigated whether CF sputum acts as a barrier to leading adeno-associated virus (AAV) gene vectors, including AAV2, the only serotype tested in CF clinical trials, and AAV1, a leading candidate for future trials. Using multiple particle tracking, we found that sputum strongly impeded diffusion of AAV, regardless of serotype, by adhesive interactions and steric obstruction. Approximately 50% of AAV vectors diffused >1,000-fold more slowly in sputum than in water, with large patient-to-patient variation. We thus tested two strategies to improve AAV diffusion in sputum. We showed that an AAV2 mutant engineered to have reduced heparin binding diffused twice as fast as AAV2 on average, presumably because of reduced adhesion to sputum. We also discovered that the mucolytic N-acetylcysteine could markedly enhance AAV diffusion by altering the sputum microstructure. These studies underscore that sputum is a major barrier to CF gene delivery, and offer strategies for increasing AAV penetration through sputum to improve clinical outcomes.


Assuntos
Fibrose Cística/virologia , Dependovirus/fisiologia , Vetores Genéticos/uso terapêutico , Escarro/virologia , Acetilcisteína/farmacologia , Linhagem Celular , Fibrose Cística/terapia , Dependovirus/classificação , Dependovirus/genética , Terapia Genética , Células HEK293 , Humanos , Microscopia Eletrônica de Varredura , Escarro/efeitos dos fármacos
16.
Expert Opin Drug Deliv ; 20(11): 1531-1552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37946533

RESUMO

INTRODUCTION: Numerous delivery strategies, primarily novel nucleic acid delivery carriers, have been developed and explored to enable therapeutically relevant lung gene therapy. However, its clinical translation is yet to be achieved despite over 30 years of efforts, which is attributed to the inability to overcome a series of biological barriers that hamper efficient nucleic acid transfer to target cells in the lung. AREAS COVERED: This review is initiated with the fundamentals of nucleic acid therapy and a brief overview of previous and ongoing efforts on clinical translation of lung gene therapy. We then walk through the nature of biological barriers encountered by nucleic acid carriers administered via respiratory and/or systemic routes. Finally, we introduce advanced strategies developed to overcome those barriers to achieve therapeutically relevant nucleic acid delivery efficiency in the lung. EXPERT OPINION: We are now stepping close to the clinical translation of lung gene therapy, thanks to the discovery of novel delivery strategies that overcome biological barriers via comprehensive preclinical studies. However, preclinical findings should be cautiously interpreted and validated to ultimately realize meaningful therapeutic outcomes with newly developed delivery strategies in humans. In particular, individual strategies should be selected, tailored, and implemented in a manner directly relevant to specific therapeutic applications and goals.


Assuntos
Ácidos Nucleicos , Humanos , Terapia Genética , Pulmão , Sistemas de Liberação de Medicamentos
17.
Adv Drug Deliv Rev ; 199: 114993, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414361

RESUMO

Messenger RNA (mRNA) is now in the limelight as a powerful tool for treating various human diseases, especially malignant tumors, thanks to the remarkable clinical outcomes of mRNA vaccines using lipid nanoparticle technology during the COVID-19 pandemic. Recent promising preclinical and clinical results that epitomize the advancement in mRNA and nanoformulation-based delivery technologies have highlighted the tremendous potential of mRNA in cancer immunotherapy. mRNAs can be harnessed for cancer immunotherapy in forms of various therapeutic modalities, including cancer vaccines, adoptive T-cell therapies, therapeutic antibodies, and immunomodulatory proteins. This review provides a comprehensive overview of the current state and prospects of mRNA-based therapeutics, including numerous delivery and therapeutic strategies.


Assuntos
COVID-19 , Neoplasias , Humanos , RNA Mensageiro , Pandemias , COVID-19/terapia , Imunoterapia/métodos
18.
ACS Biomater Sci Eng ; 9(8): 4567-4572, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37523785

RESUMO

We here introduce a novel bioreducible polymer-based gene delivery platform enabling widespread transgene expression in multiple brain regions with therapeutic relevance following intracranial convection-enhanced delivery. Our bioreducible nanoparticles provide markedly enhanced gene delivery efficacy in vitro and in vivo compared to nonbiodegradable nanoparticles primarily due to the ability to release gene payloads preferentially inside cells. Remarkably, our platform exhibits competitive gene delivery efficacy in a neuron-rich brain region compared to a viral vector under previous and current clinical investigations with demonstrated positive outcomes. Thus, our platform may serve as an attractive alternative for the intracranial gene therapy of neurological disorders.


Assuntos
Técnicas de Transferência de Genes , Polímeros , Polímeros/metabolismo , Terapia Genética , Encéfalo/metabolismo
19.
J Extracell Vesicles ; 12(6): e12324, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272896

RESUMO

Adeno-associated virus (AAV) vector has shown multiple clinical breakthroughs, but its clinical implementation in inhaled gene therapy remains elusive due to difficulty in transducing lung airway cells. We demonstrate here AAV serotype 6 (AAV6) associated with extracellular vesicles (EVs) and secreted from vector-producing HEK-293 cells during vector preparation (EVAAV6) as a safe and highly efficacious gene delivery platform for inhaled gene therapy applications. Specifically, we discovered that EVAAV6 provided markedly enhanced reporter transgene expression in mucus-covered air-liquid interface (ALI) cultures of primary human bronchial and nasal epithelial cells as well as in mouse lung airways compared to standard preparations of AAV6 alone. Of note, AAV6 has been previously shown to outperform other clinically tested AAV serotypes, including those approved by the FDA for treating non-lung diseases, in transducing ALI cultures of primary human airway cells. We provide compelling experimental evidence that the superior performance of EVAAV6 is attributed to the ability of EV to facilitate mucus penetration and cellular entry/transduction of AAV6. The tight and stable linkage between AAV6 and EVs appears essential to exploit the benefits of EVs given that a physical mixture of individually prepared EVs and AAV6 failed to mediate EV-AAV6 interactions or to enhance gene transfer efficacy.


Assuntos
Vesículas Extracelulares , Vírus Satélites , Camundongos , Animais , Humanos , Vírus Satélites/genética , Transdução Genética , Dependovirus/genética , Células HEK293
20.
Bioeng Transl Med ; 8(2): e10401, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36925690

RESUMO

Silicosis is an irreversible and progressive fibrotic lung disease caused by massive inhalation of crystalline silica dust at workplaces, affecting millions of industrial workers worldwide. A tyrosine kinase inhibitor, nintedanib (NTB), has emerged as a potential silicosis treatment due to its inhibitory effects on key signaling pathways that promote silica-induced pulmonary fibrosis. However, chronic and frequent use of the oral NTB formulation clinically approved for treating other fibrotic lung diseases often results in significant side effects. To this end, we engineered a nanocrystal-based suspension formulation of NTB (NTB-NS) possessing specific physicochemical properties to enhance drug retention in the lung for localized treatment of silicosis via inhalation. Our NTB-NS formulation was prepared using a wet-milling procedure in presence of Pluronic F127 to endow the formulation with nonadhesive surface coatings to minimize interactions with therapy-inactivating delivery barriers in the lung. We found that NTB-NS, following intratracheal administration, provided robust anti-fibrotic effects and mechanical lung function recovery in a mouse model of silicosis, whereas a 100-fold greater oral NTB dose given with a triple dosing frequency failed to do so. Importantly, several key pathological phenotypes were fully normalized by NTB-NS without displaying notable local or systemic adverse effects. Overall, NTB-NS may open a new avenue for localized treatment of silicosis and potentially other fibrotic lung diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA