Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(39)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838646

RESUMO

Transition metal (TM) ion doping in II-VI semiconductors can produce exciton magnetic polarons (EMPs) and localized EMPs containing longitudinal optical (LO) phonon coupling, which will be discussed in this paper. TM ion doping in II-VI semiconductors for a dilute magnetic semiconductor show emission via magnetic polarons (MPs) together with hot carrier effects that need to be understood via its optical properties. The high excitation power that is responsible for hot carrier effects suppresses the charge trapping effect in low exciton binding energy (8.12 meV) semiconductors, even at room temperature (RT). The large polaron radius exhibits strong interaction between the carrier and MP, resulting in anharmonicity effects, in which the side-band energy overtone to LO phonons. The photon-like polaritons exhibit polarized spin interactions with LO phonons that show strong spin-phonon polaritons at RT. The temperature-dependent photoluminescence spectra of Ni-doped ZnTe show free excitons (FX) and FXs interacting with 2LO phonon-spin interactions, corresponding to3T1(3F) →1T1(1G) and EMP peaks with ferromagnetically coupled Ni ions at3T1(3F) →1E(1G). In addition, other d-d transitions of single Ni ions (600-900 nm) appear at the low-energy side. RT energy shifts of 14-38 meV are observed due to localized states with density-of-states tails extending far into the bandgap-related spin-induced localization at the valence band. These results show spin-spin magnetic coupling and spin-phonon interactions at RT that open up a more realistic new horizon of optically controlled dilute magnetic semiconductor applications.

2.
Nanotechnology ; 31(25): 254001, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32150737

RESUMO

Heterostructures composed of nano-/micro-junctions, combining the excellent photon harvesting properties of nano-systems and the ultrafast carrier transfer of micro-systems, have a promising role in high-performance photodetectors. In this paper, a highly-sensitive trilayer self-powered perovskite-based photodetector ITO/ZnO (70 nm)/CdS (150 nm)/CsPbBr3 (200 nm)/Au, in which the CdS nanorods (NRs) layer is sandwiched between a ZnO/CsPbBr3 interface to reduce the interfacial charge carriers' recombination and the charge transport resistance, is presented. Due to the strong built-in potential and the internal driving electric-field, an ultra-high On/Off current ratio of 106 with a responsivity of 86 mA W-1 and a specific detectivity of 6.2 × 1011 Jones was obtained at zero bias under 85 µW cm-2 405 nm illumination and its rise/decay time at zero bias is 0.3/0.25 s. Therefore, the enhanced device performance strongly suggests the great potential of such a trilayer heterojunction device for use in high-performance perovskite photodetectors.

3.
Nanotechnology ; 31(16): 165502, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31891920

RESUMO

Colloidal quantum dots (CQDs) are very promising nanomaterials for optoelectronics due to their tunable bandgap and quantum confinement effect. All-inorganic CsPbX3 (X = Br, Cl and I) perovskite nanocrystals (NCs) have attracted enormous interests owing to their promising and exciting applications in photovoltaic devices. In this paper, all-solution-processed UV-IR broadband trilayer photodetectors ITO/ZnO/PbS/CsPbBr3/Au and ITO/ZnO/CsPbBr3/PbS/Au with high performance were presented. The role of CsPbBr3 QDs layer as the carriers-extracting layer in the trilayer devices was discussed. As compared with bilayer device ITO/ZnO/PbS/Au, both the dark currents and photocurrents under illumination from trilayer photodetectors are enhanced, but the trilayer photodetector ITO/ZnO(80 nm)/PbS(150 nm)/CsPbBr3(50 nm)/Au showed a maximum specific detectivity (D*) of 8.3 × 1012 Jones with a responsivity (R) of 35 A W-1 under 1.6 mW cm-2 980 nm illumination. However, another trilayer photodetector ITO/ZnO(80 nm)/CsPbBr3(50 nm)/PbS(150 nm)/Au showed a maximum D* of 1.73 × 1012 Jones with a R of 5.31 A W-1 under 6.8 mW cm-2 405 nm illumination. Further, the underlying mechanism for the enhanced performance of trilayer photodetectors was discussed. Thus, this strategy of all-solution-processed heterojunction configuration paves a facile way for broadband photodetectors with high performance.

4.
Nanotechnology ; 31(10): 105203, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31751965

RESUMO

In the past few decades, great attention has been paid to the development of IV-VI semiconductor colloidal quantum dots, such as PbSe, PbS and PbSSe, in infrared (IR) photodetectors due to their high photosensitivity, solution-processing and low cost fabrication. IR photodetectors based on field-effect transistors (FETs) showed high detectivity since the transconductance can magnify the drain-source current under certain applied gate voltages. However, traditional lateral FETs usually suffer from low photosensitivity and slow responsivity, which restricts their widespread commercial applications. In this work, therefore, novel vertical FET (VFET) based photodetectors are presented, in which the active layer is sandwiched between porous source electrode and planar drain electrode, resulting to ultrashort channel length. In this way, enhanced photoresponsivity and specific detectivity of 291 A W-1 and 1.84 × 1014 Jones, respectively, can be obtained at low drain-source voltage (V DS) of -1 V and gate voltage (V g) of -2 V under 100 µW cm-2 illumination intensity, which was better than that of the traditional lateral FET based photodetectors. Therefore, it is promising to fabricate broadband photodetectors with high performance and good stability by this easy approach.

5.
Nanotechnology ; 30(8): 085707, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30523858

RESUMO

A facile method to synthesize a CH3NH3PbI3: MoS2 nanohybrid for high-performance solution-processed photodetectors is presented. The interfacial charge carriers transfer due to the existence of heterojunctions between the 2D MoS2 nanosheet and perovskite cuboids are utilized to enhance the device performance. The dark current of the photodiode Au/CH3NH3PbI3: MoS2/Au was suppressed and its photocurrent was enhanced when compared to a pristine perovskite nanocrystal device Au/CH3NH3PbI3/Au. The lowest dark current of 0.34 × 10-9 A was observed from the photodiode Au/CH3NH3PbI3: MoS2/Au and the photoresponsivity and photosensitivity increased from 312 mA W-1 to 696 mA W-1 and from 9.02 to 87.47, respectively, showing an enhancement of 123.1% and 869.7%. Also, the rising time and falling time were reduced from 73 ms to 50 ms and 60 ms to 16 ms, respectively, when compared to those for the pristine perovskite nanocrystal-based photodiode Au/CH3NH3PbI3/Au. Therefore, this method provides a simple and effective approach to synthesize 2D nanosheet blended organic-inorganic nanohybrids for application in optoelectronic devices.

6.
Nanotechnology ; 30(46): 465203, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31476138

RESUMO

Recently, great attention has been paid to IV-VI colloidal quantum dots (CQDs) for their high photosensitivity, solution processability and low cost. Also, metal halide perovskites are very promising materials to realize the high-performance solution-processed visible-light photodetectors due to their cost-effective manufacturing, tunable absorption and photoluminescence in whole visible spectrum. In this paper, we present solution-processed CQDs-based tandem broadband photodetectors with low dark-current and high-sensitivity by inserting dielectric Polymethyl methacrylate (PMMA) interlayer between two sub-detectors. Our experimental data showed that the tandem broadband photodetector ITO/PEDOT:PSS/CsPbBr3:PbS0.4Se0.6/ZnO/PVK/CsPbBr3:PbS0.4Se0.6/ZnO/Au showed a maximum specific detectivity of 6.8 × 1013 Jones with a responsivity of 27 A W-1 under 57.8 µW cm-2 980 nm illumination. The device performance can be further enhanced by inserting a 50 nm dielectric PMMA layer between the two sub-photodetectors. As the result, the tandem photodetector ITO/PEDOT:PSS/CsPbBr3:PbS0.4Se0.6/ZnO/PMMA(50 nm)/PVK/CsPbBr3:PbS0.4Se0.6/ZnO/Au exhibits a maximum specific detectivity of 1.32 × 1014 Jones with a responsivity of 27.72 A W-1 under 57.8 µW cm-2 of 980 nm laser. Further, the physical mechanisms for the enhanced performance are discussed in detail.

7.
Appl Opt ; 57(19): 5392-5398, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117834

RESUMO

Conventional imaging methods will cause a serious distortion for large object plane imaging with a limited object-to-sensor distance (OTSD). Here, we propose an imaging method based on the combination of microlens arrays and aperture arrays to realize the low-distortion, large object plane imaging range (OPIR) and compact design imaging at a close OTSD. Two-stage microlens arrays are utilized to reduce the distance between the object and sensor with low distortion, and two-stage aperture arrays are sandwiched between the microlens arrays to eliminate stray light between different microlenses. The theoretical analysis and simulation results indicate that our proposed method can realize low-distortion imaging with a large OPIR when the OTSD is seriously limited. This imaging method can be used widely in small-size optical devices where the OTSD is extremely limited.

8.
Nanotechnology ; 28(50): 505501, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29095147

RESUMO

Organic-inorganic hybrid photodetectors attract more and more interest, since they can combine the advantages of both organic and inorganic materials into one device, and broadband photodetectors are widely used in many scientific and industrial fields. In this work, we demonstrate the enhanced-performance solution-processed broadband photodiodes by epitaxially blending organo-lead halide perovskite (MAPbBr3) colloidal quantum dots (CQDs) with ternary PbSxSe1-x CQDs as the active layer. As a result, the interfacial features of the hetero-epitaxial nanocomposite MAPbBr3:PbSxSe1-x enables the design and perception of functionalities that are not available for the single-phase constituents or layered devices. By combining the high electrical transport properties of MAPbBr3 QDs with the highly radiative efficiency of PbS0.4Se0.6 QDs, the photodiodes ITO/ZnO/PbS0.4Se0.6:MAPbBr3/Au exhibit a maximum photoresponsivity and specific detectivity of 21.48 A W-1 and 3.59 × 1013 Jones, 22.16 A W-1 and 3.70 × 1013 Jones at room temperature under 49.8 µW cm-2 532 nm laser and 62 µW cm-2 980 nm laser, respectively. This is higher than that of the layered photodiodes ITO/ZnO/PbS0.4Se0.6/MAPbBr3/Au, pure perovskite (MAPbBr3) (or PbS0.4Se0.6) QD-based photodiodes reported previously, and it is also better than the traditional inorganic semiconductor-based photodetectors. Our experimental results indicate that epitaxially-aligned nanocomposites (MAPbBr3:PbSxSe1-x) exhibit remarkable optoelectronic properties that are traceable to their atomic-scale crystalline coherence, and one can utilize the excellent photocarrier diffusion from PbSxSe1-x into the perovskite to enhance the device performance from the UV-visible to infrared region.

9.
Nanotechnology ; 27(6): 065201, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26684002

RESUMO

Infrared (IR) emission lead selenide (PbSe) quantum dots (QDs) have gained considerable attention in the last decade due to their potential applications in optoelectronic devices. However, the comprehensive applications of PbSe QDs have not been realized yet due to their high susceptibility to oxidation in air. In this paper, we demonstrate the stability enhancement of PbSe colloidal QDs via a post-synthetic ammonium chloride treatment and its applications in a solution-processed high-performance IR photodetector with a field-effect transistor (FET) configuration by reversely fabricating the PbSe active layer and polymethylmethacrylate (PMMA) dielectric layer. The responsivity and the specific detectivity of the FET-based photodetector Au(source, drain)/PbSe(52 nm)/PMMA(930 nm)/Au(gate) reached 64.17 mA W(-1) and 5.08 × 10(10) Jones, respectively, under 980 nm laser illumination with an intensity of 0.1 mW cm(-2). Therefore, it provides a promising way to make a high-sensitivity near-IR/mid-IR photodetector.

10.
Chem Sci ; 15(22): 8514-8529, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846389

RESUMO

The advancement of optoelectronic applications relies heavily on the development of high-performance photodetectors that are self-driven and capable of detecting a wide range of wavelengths. CsPbI3 nanorods (NRs), known for their outstanding optical and electrical properties, offer direct bandgap characteristics, high absorption coefficients, and long carrier diffusion lengths. However, challenges such as stability and limited photoluminescence quantum yield have impeded their widespread application. By integrating PbSe colloidal quantum dots (CQDs) with CsPbI3 NRs, the hybrid nanomaterial harnesses the benefits of each component, resulting in enhanced optoelectronic properties and device performance. In this work, a self-powered and broadband photodetector, ITO/ZnO/CsPbI3:PbSe/CuSCN/Au, is fabricated, in which CsPbI3 NRs are decorated with PbSe QDs as the photoactive layer, ZnO as the electron-transporting layer and CuSCN as the hole-transporting layer. The device performance is further improved through the incorporation of Cs2CO3 into the ZnO layer, resulting in an enhancement of its overall operational characteristics. As a result, a notable responsivity of 9.29 A W-1 and a specific detectivity of 3.17 × 1014 Jones were achieved. Certainly, the TCAD simulations closely correlate with our experimental data, facilitating a comprehensive exploration of the fundamental physical mechanisms responsible for the improved performance of these surface-passivated heterojunction photodetectors. This opens up exciting possibilities for substantial advancements in the realm of next-generation optoelectronic devices.

11.
Nanoscale ; 16(13): 6573-6584, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38465698

RESUMO

All-inorganic lead halide perovskites and quantum dots (QDs) have gained significant attention since their emergence, owing to their immense potential for applications in optoelectronic devices. Here, enhanced-performance broadband photodetectors based on the bulk-heterostructure of a CsPbBr3 perovskite and PbS colloidal quantum dots (CQDs) are presented, and 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM]BF4) ionic liquids as a dual-purpose additive were introduced in the blended film to regulate the surface of QDs by facilitating surface passivation, adjusting energy levels, and coupling with longer alkyl chains as compared to iodide ions (I-). As a result, a superior-quality bulk-heterostructure based photodetector with long-term stability was obtained, showing outstanding performance in photodetection across the visible to near-infrared wavelength range, demonstrating a high photoresponsivity of 22.4 A W-1 with a response time of 16.2 ms and a specific detectivity of 1.58 × 1014 Jones under 405 nm illumination. Thus, this work provides a novel modification strategy for PbS:CsPbBr3 as a promising material for novel optoelectronics.

12.
ACS Appl Mater Interfaces ; 15(21): 25671-25683, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37202884

RESUMO

Heterojunctions based on low dimensional semiconducting materials are one of the most promising alternatives for next-generation optoelectronic devices. By choosing different dopants in high-quality semiconducting nanomaterials, p-n junctions can be realized with tailored energy band alignments. Also, p-n bulk-heterojunctions (BHJs) based photodetectors have shown high detectivity because of the suppressed dark current and high photocurrent, which are due to the larger built-in electric potential within the depletion region and can significantly improve the quantum efficiency by reducing the carriers' recombination. In this work, PbSe quantum dots (QDs) blended with ZnO nanocrystals (NCs) were used as the n-type layer, while CsPbBr3 NCs doped with P3HT were used as the p-type layer; as a result, a p-n BHJ was formed with a strong built-in electric field. Consequently, such a kind of p-n BHJ photodetector ITO/ZnO/PbSe:ZnO/CsPbBr3:P3HT/P3HT/Au showed a high ON/OFF current ratio of 105 with a photoresponsivity of 1.4 A/W and specific detectivity of 6.59 × 1014 Jones under 0.1 mW/cm2 532 nm illumination in self-driven mode. Moreover, the simulation performed by TCAD also agrees well with our experimental results, and the underlying physical mechanism for enhanced performance is discussed in detail for this type of p-n BHJ photodetector.

13.
J Ayub Med Coll Abbottabad ; 23(4): 3-5, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-23472397

RESUMO

BACKGROUND: Preeclampsia is a multisystem disorder that can induce damage to cardiovascular system, kidneys, brain and liver. Pregnancy-induced hypertension (PIH) is responsible for significant maternal and perinatal morbidity. This study was conducted to compare the liver function tests in preeclampsia with normal pregnancy. METHODS: This study was carried out on 100 pregnant women after 20 weeks of gestation admitted in Obs/Gyn units of Ayub Teaching Hospital, Abbottabad. The subjects were divided into two groups. Group A consisted of 50 cases of preeclampsia having blood pressure > or = 140/90 mmHg, proteinuria in 24 hours > or = 300 mg and oedema; Group B had 50 normal pregnant women after 20 weeks of gestation. The data including BMI, parity, period of gestation, blood pressure and presenting complaints of all subjects were recorded. Serum bilirubin and plasma levels of liver enzymes ALT, AST and ALK were measured. RESULTS: The mean BMI of the cases was 29.04 +/- 3.97 and that of controls was 26.54 +/- 3.11. The mean value of serum bilirubin in cases was 10.78 +/- 3.74 micromol/L and in controls it was 7.92 +/- 2.42 micromol/L (p < 0.001). The mean values of enzyme ALT in cases was 55.81 +/- 31.93 U/L while in the controls it was 15.22 +/- 3.30 U/L (p < 0.001). Mean serum AST in the cases was 41.34 +/- 10.76 U/L and in the controls it was 24 +/- 2.54 U/L (p < 0.001). Mean ALK level of cases before delivery was 454.16 +/- 243.69 U/L, and in controls it was 181.34 +/- 66.76 U/L (p < 0.001). CONCLUSION: Raised levels of serum bilirubin and liver enzymes ALT, AST and ALK were found in preeclampsia cases.


Assuntos
Testes de Função Hepática , Pré-Eclâmpsia/sangue , Adulto , Índice de Massa Corporal , Estudos de Casos e Controles , Feminino , Humanos , Gravidez
14.
ACS Appl Mater Interfaces ; 12(23): 26153-26160, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32419464

RESUMO

Currently, colloidal quantum dots (CQDs)-based photodetectors are widely investigated due to their low cost and easy integration with optoelectronic devices. The requirements for a high-performance photodetector are a low dark current and a high photocurrent. Normally, photodetectors with a low dark current also possess a low photocurrent, or photodetectors with reduced dark current possess a reduced photocurrent, resulting in low detectivity. In this paper, a solution to suppress dark current and maintain a high photocurrent, i.e., use of poly(methyl methacrylate) doped with Au nanoparticles (NPs) (i.e., PMMA:Au) as an interlayer for enhanced-performance tandem photodetectors, is presented. Our experimental data showed that the dark current through the tandem photodetector ITO/PEDOT:PSS/PbS:CsSnBr3/ZnO/PMMA:Au/CuSeN/PbS:CsSnBr3/ZnO/Ag is suppressed significantly; meanwhile, a high photocurrent is maintained after a PMMA:Au interlayer has been inserted between two subdetectors. The inserted PMMA:Au interlayer acts as storage nodes for electrons, reducing the dark current through the device; meanwhile, the photocurrent can be enhanced under illumination. As a result, the specific detectivity of the tandem photodetector with 35 nm PMMA:Au interlayer was enhanced significantly from 5.01 × 1012 to 2.7 × 1015 Jones under 300 µW/cm2 532 nm illumination at a low voltage of -1 V as compared to the device without a PMMA:Au interlayer. Further, the physical mechanism of enhanced performance is discussed in detail.

15.
IEEE Trans Biomed Circuits Syst ; 13(6): 1747-1758, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31514153

RESUMO

Implanted devices have important applications in biomedical monitoring, diagnosis and treatment, where intra-body communication (IBC) has a decent prospect in wireless implant communication technology by using the conductive properties of the human body to transmit a signal. Most of the investigations on implant IBC are focused on galvanic coupling type. Capacitive coupling IBC device seems hard to implant, because the ground electrode of it seemingly has to be exposed to air. Zhang et al. previously proposed an implantable capacitive coupling electrode, which can be totally implanted into the human body [1], but it lacks an overall characteristic investigation. In this paper, a comparable investigation of characteristics for implant intra-body communication based on galvanic and capacitive coupling is conducted. The human arm models are established by finite element method. Meanwhile, aiming to improve the accuracy of the model, electrode polarization impedance (EPI) is incorporated into the model, and the influences of electrode polarization impedance on simulation results are also analyzed. Subsequently, the corresponding measurements using porcine are conducted. We confirm good capacitive coupling communication performances can be achieved. Moreover, some important conclusions have been included by contrastive analysis, which can be used to optimize implant intra-body communication devices performance and provide some hints for practical IBC design. The conclusions also indicate that the implant IBC has promising prospect in healthcare and other related fields.


Assuntos
Monitorização Ambulatorial/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Simulação por Computador , Impedância Elétrica , Eletrodos Implantados , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Suínos
16.
Nanoscale ; 11(12): 5188-5196, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30855064

RESUMO

Organic-inorganic hybrid perovskite materials with exotic semiconducting properties have become inevitable candidates for next-generation electronic devices. Very recently, a low dimensional nanostructure of the perovskite materials has attracted the scientific community due to its enhanced performance in optoelectronics as compared to its bulk counterparts. Herein, a facile method was developed for the scalable, room-temperature synthesis of CH3NH3PbI3 (MAPbI3) nano/microtubes by direct conversion of lead iodide (PbI2) microtubes through a solution-phase method. At first, the PbI2 microtubes were synthesized by the anti-solvent crystallization process and subsequently converted to CH3NH3PbI3 nano/microtubes by the addition of CH3NH3I (MAI) precursor directly in the solution phase. The corresponding photodetectors (PDs) in the lateral metal-semiconductor-metal (MSM) configuration of the PbI2 microtubes and MAPbI3 nano/microtubes on glass substrates were investigated systematically. Compared to the PbI2 based PDs (557 mA W-1, 3.65 × 1012 Jones, 0.251 s/0.252 s), the MAPbI3 based PDs exhibit higher photoresponsivity, specific detectivity, and faster response time (25 A W-1, 9.9 × 1013 Jones, 49 ms/20 ms) under irradiation with 4.6 µW cm-2 intensity light of the 532 nm laser at a bias of 5 V. The proposed method is a low-temperature process, easy to apply in large scale synthesis, and finds potential applications in optoelectronic devices.

17.
ACS Appl Mater Interfaces ; 8(28): 18526-33, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27176547

RESUMO

With its properties of bandgap tunability, low cost, and substrate compatibility, colloidal quantum dots (CQDs) are becoming promising materials for optoelectronic applications. Additionally, solution-processed organic, inorganic, and hybrid ligand-exchange technologies have been widely used in PbS CQDs solar cells, and currently the maximum certified power conversion efficiency of 9.9% has been reported by passivation treatment of molecular iodine. Presently, there are still some challenges, and the basic physical mechanism of charge carriers in CQDs-based solar cells is not clear. Electrochemical impedance spectroscopy is a monitoring technology for current by changing the frequency of applied alternating current voltage, and it provides an insight into its electrical properties that cannot be measured by direct current testing facilities. In this work, we used EIS to analyze the recombination resistance, carrier lifetime, capacitance, and conductivity of two typical PbS CQD solar cells Au/PbS-TBAl/ZnO/ITO and Au/PbS-EDT/PbS-TBAl/ZnO/ITO, in this way, to better understand the charge carriers conduction mechanism behind in PbS CQD solar cells, and it provides a guide to design high-performance quantum-dots solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA