Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 33(4): 599-611, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36922001

RESUMO

Although mutation rates have been extensively studied, variation in mutation rates throughout the genome is poorly understood. To understand patterns of genetic variation, it is important to understand how mutation rates vary. Chromatin modifications may be an important factor in determining variation in mutation rates in eukaryotic genomes. To study variation in mutation rates, we performed a mutation accumulation (MA) experiment in the filamentous fungus Neurospora crassa and sequenced the genomes of the 40 MA lines that had been propagated asexually for approximately 1015 [Formula: see text] mitoses. We detected 1322 mutations in total and observed that the mutation rate was higher in regions of low GC, in domains of H3K9 trimethylation, in centromeric regions, and in domains of H3K27 trimethylation. The rate of single-nucleotide mutations in euchromatin was [Formula: see text] In contrast, the mutation rate in H3K9me3 domains was 10-fold higher: 2.43 [Formula: see text] We also observed that the spectrum of single-nucleotide mutations was different between H3K9me3 and euchromatic domains. Our statistical model of mutation rate variation predicted a moderate amount of extant genetic variation, suggesting that the mutation rate is an important factor in determining levels of natural genetic variation. Furthermore, we characterized mutation rates of structural variants, complex mutations, and the effect of local sequence context on the mutation rate. Our study highlights that chromatin modifications are associated with mutation rates, and accurate evolutionary inferences should take variation in mutation rates across the genome into account.


Assuntos
Neurospora crassa , Neurospora crassa/genética , Mutagênese , Mutação , Taxa de Mutação , Eucromatina , Nucleotídeos
2.
Mol Ecol ; 32(14): 4018-4030, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37143353

RESUMO

In nature, organisms have to cope with constantly changing environments. In certain conditions, it may be advantageous for the parents to pass on information about the environment, or resources to their offspring. Such transfers are known as parental effects, and they are well documented in plants and animals, but not in other eukaryotes, such as fungi. Many fungi disperse through spores, and fungal spores can potentially carry information or resources to the next generation. Understanding parental effects and their evolutionary consequences in fungi is of vital importance as they perform crucial ecosystem functions. In this study, we investigated whether parental effects are present in the filamentous fungus Neurospora crassa, how long do they last, whether the effects are adaptive, and what is their mechanism. We performed a fully factorial match/mismatch experiment for a good and a poor quality environment, in which we measured the initial growth of strains that experienced either a matched or mismatched environment in their previous generation. We found a strong silver-spoon effect in initial mycelium growth, which lasted for one generation, and increased fitness during competition experiments. By using deletion mutants that lacked key genes in epigenetic processes, we show that epigenetic mechanisms are not involved in this effect. Instead, we show that spore glycogen content, glucose availability and a radical transcription shift in spores are the main mechanisms behind this parental effect.


Assuntos
Ecossistema , Neurospora crassa , Animais , Fenótipo , Neurospora crassa/genética , Evolução Biológica , Epigênese Genética
4.
Evolution ; 74(8): 1772-1787, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32432345

RESUMO

Earth's temperature is increasing due to anthropogenic CO 2 emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism's physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model system Neurospora crassa. We studied the amount of genetic variation for thermal performance curves and examined possible genetic constraints by estimating the G-matrix. We observed a substantial amount of genetic variation for growth in different temperatures, and most genetic variation was for performance curve elevation. Contrary to common theoretical assumptions, we did not find strong evidence for genetic trade-offs for growth between hotter and colder temperatures. We also simulated short-term evolution of thermal performance curves of N. crassa, and suggest that they can have versatile responses to selection.


Assuntos
Adaptação Biológica , Evolução Biológica , Modelos Genéticos , Neurospora crassa/genética , Locos de Características Quantitativas , Mudança Climática , Variação Genética , Neurospora crassa/crescimento & desenvolvimento , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA