Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 79(7): 2397-404, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23377933

RESUMO

The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens was the electron-accepting partner for either Geobacter metallireducens, which performs DIET, or Pelobacter carbinolicus, which relies on HIT. Transcript abundance for G. sulfurreducens uptake hydrogenase genes was 7-fold lower in cocultures with G. metallireducens than in cocultures with P. carbinolicus, consistent with DIET and HIT, respectively, in the two cocultures. Transcript abundance for the pilus-associated cytochrome OmcS, which is essential for DIET but not for HIT, was 240-fold higher in the cocultures with G. metallireducens than in cocultures with P. carbinolicus. The pilin gene pilA was moderately expressed despite a mutation that might be expected to repress pilA expression. Lower transcript abundance for G. sulfurreducens genes associated with acetate metabolism in the cocultures with P. carbinolicus was consistent with the repression of these genes by H2 during HIT. Genes for the biogenesis of pili and flagella and several c-type cytochrome genes were among the most highly expressed in G. metallireducens. Mutant strains that lacked the ability to produce pili, flagella, or the outer surface c-type cytochrome encoded by Gmet_2896 were not able to form cocultures with G. sulfurreducens. These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments.


Assuntos
Deltaproteobacteria/genética , Deltaproteobacteria/metabolismo , Transporte de Elétrons , Redes e Vias Metabólicas/genética , Transcriptoma , Acetatos/metabolismo , Deltaproteobacteria/crescimento & desenvolvimento , Hidrogênio/metabolismo
2.
Appl Environ Microbiol ; 78(21): 7645-51, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923399

RESUMO

Direct interspecies electron transfer (DIET) is an alternative to interspecies H(2)/formate transfer as a mechanism for microbial species to cooperatively exchange electrons during syntrophic metabolism. To understand what specific properties contribute to DIET, studies were conducted with Pelobacter carbinolicus, a close relative of Geobacter metallireducens, which is capable of DIET. P. carbinolicus grew in coculture with Geobacter sulfurreducens with ethanol as the electron donor and fumarate as the electron acceptor, conditions under which G. sulfurreducens formed direct electrical connections with G. metallireducens. In contrast to the cell aggregation associated with DIET, P. carbinolicus and G. sulfurreducens did not aggregate. Attempts to initiate cocultures with a genetically modified strain of G. sulfurreducens incapable of both H(2) and formate utilization were unsuccessful, whereas cocultures readily grew with mutant strains capable of formate but not H(2) uptake or vice versa. The hydrogenase mutant of G. sulfurreducens compensated, in cocultures, with significantly increased formate dehydrogenase gene expression. In contrast, the transcript abundance of a hydrogenase gene was comparable in cocultures with that for the formate dehydrogenase mutant of G. sulfurreducens or the wild type, suggesting that H(2) was the primary electron carrier in the wild-type cocultures. Cocultures were also initiated with strains of G. sulfurreducens that could not produce pili or OmcS, two essential components for DIET. The finding that P. carbinolicus exchanged electrons with G. sulfurreducens via interspecies transfer of H(2)/formate rather than DIET demonstrates that not all microorganisms that can grow syntrophically are capable of DIET and that closely related microorganisms may use significantly different strategies for interspecies electron exchange.


Assuntos
Deltaproteobacteria/metabolismo , Formiatos/metabolismo , Geobacter/metabolismo , Hidrogênio/metabolismo , Interações Microbianas , Técnicas de Cocultura , Deltaproteobacteria/genética , Deltaproteobacteria/crescimento & desenvolvimento , Eletricidade , Transporte de Elétrons , Elétrons , Formiatos/química , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Hidrogênio/química
3.
Environ Microbiol ; 13(1): 13-23, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20636372

RESUMO

The stimulation of subsurface microbial metabolism often associated with engineered bioremediation of groundwater contaminants presents subsurface microorganisms, which are adapted for slow growth and metabolism in the subsurface, with new selective pressures. In order to better understand how Geobacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geobacter sulfurreducens was put under selective pressure for rapid Fe(III) oxide reduction. The genomes of two resultant strains with rates of Fe(III) oxide reduction that were 10-fold higher than those of the parent strain were resequenced. Both strains contain either a single base-pair change or a 1 nucleotide insertion in a GEMM riboswitch upstream of GSU1761, a gene coding for the periplasmic c-type cytochrome designated PgcA. GSU1771, a gene coding for a SARP regulator, was also mutated in both strains. Introduction of either of the GEMM riboswitch mutations upstream of pgcA in the wild-type increased the abundance of pgcA transcripts, consistent with increased expression of pgcA in the adapted strains. One of the mutations doubled the rate of Fe(III) oxide reduction. Interruption of GSU1771 doubled the Fe(III) oxide reduction rate. This was associated with an increased in expression of pilA, the gene encoding the structural protein for the pili thought to function as microbial nanowires. The combination of the GSU1771 interruption with either of the pgcA mutations resulted in a strain that reduced Fe(III) as fast as the comparable adapted strain. These results suggest that the accumulation of a small number of beneficial mutations under selective pressure, similar to that potentially present during bioremediation, can greatly enhance the capacity for Fe(III) oxide reduction in G. sulfurreducens. Furthermore, the results emphasize the importance of the c-type cytochrome PgcA and pili in Fe(III) oxide reduction and demonstrate how adaptive evolution studies can aid in the elucidation of complex mechanisms, such as extracellular electron transfer.


Assuntos
Adaptação Fisiológica/genética , Grupo dos Citocromos c/metabolismo , Transporte de Elétrons , Compostos Férricos/metabolismo , Geobacter/genética , Biodegradação Ambiental , Grupo dos Citocromos c/genética , DNA Bacteriano/genética , Evolução Molecular , Perfilação da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Geobacter/enzimologia , Geobacter/crescimento & desenvolvimento , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Riboswitch , Análise de Sequência de DNA
4.
Appl Environ Microbiol ; 77(9): 2882-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21378039

RESUMO

Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms is capable of this process. Several other acetogenic bacteria, including two other Sporomusa species, Clostridium ljungdahlii, Clostridium aceticum, and Moorella thermoacetica, consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate also were formed, with 2-oxobutyrate being the predominant identified product of electrosynthesis by C. aceticum. S. sphaeroides, C. ljungdahlii, and M. thermoacetica had high (>80%) efficiencies of electrons consumed and recovered in identified products. The acetogen Acetobacterium woodii was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process.


Assuntos
Dióxido de Carbono/metabolismo , Clostridium/metabolismo , Elétrons , Moorella/metabolismo , Compostos Orgânicos/metabolismo , Veillonellaceae/metabolismo , Acetobacterium/metabolismo , Eletrodos/microbiologia , Oxirredução
5.
Front Microbiol ; 11: 570714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042074

RESUMO

Oil reservoirs contain microbial populations that are both autochthonously and allochthonously introduced by industrial development. These microbial populations are greatly influenced by external factors including, but not limited to, salinity and temperature. In this study, we used metagenomics to examine the microbial populations within five wells of the same hydrocarbon reservoir system in the Gulf of Mexico. These elevated salinity (149-181 ppt salinity, 4-5× salinity of seawater) reservoirs have limited taxonomic and functional microbial diversity dominated by methanogens, Halanaerobium and other Firmicutes lineages, and contained less abundant lineages such as Deltaproteobacteria. Metagenome assembled genomes (MAGs) were generated and analyzed from the various wells. Methanogen MAGs were closely related to Methanohalophilus euhalobius, a known methylotrophic methanogen from a high salinity oil environment. Based on metabolic reconstruction of genomes, the Halanaerobium perform glycine betaine fermentation, potentially produced by the methanogens. Industrial introduction of methanol to prevent methane hydrate formation to this environment is likely to be consumed by these methanogens. As such, this subsurface oil population may represent influences from industrial processes.

6.
Sci Rep ; 10(1): 5772, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238866

RESUMO

Microbial cells in the seabed are thought to persist by slow population turnover rates and extremely low energy requirements. External stimulations such as seafloor hydrocarbon seeps have been demonstrated to significantly boost microbial growth; however, the microbial community response has not been fully understood. Here we report a comparative metagenomic study of microbial response to natural hydrocarbon seeps in the Gulf of Mexico. Subsurface sediments (10-15 cm below seafloor) were collected from five natural seep sites and two reference sites. The resulting metagenome sequencing datasets were analyzed with both gene-based and genome-based approaches. 16S rRNA gene-based analyses suggest that the seep samples are distinct from the references by both 16S rRNA fractional content and phylogeny, with the former dominated by ANME-1 archaea (~50% of total) and Desulfobacterales, and the latter dominated by the Deltaproteobacteria, Planctomycetes, and Chloroflexi phyla. Sulfate-reducing bacteria (SRB) are present in both types of samples, with higher relative abundances in seep samples than the references. Genes for nitrogen fixation were predominantly found in the seep sites, whereas the reference sites showed a dominant signal for anaerobic ammonium oxidation (anammox). We recovered 49 metagenome-assembled genomes and assessed the microbial functional potentials in both types of samples. By this genome-based analysis, the seep samples were dominated by ANME-1 archaea and SRB, with the capacity for methane oxidation coupled to sulfate reduction, which is consistent with the 16S rRNA-gene based characterization. Although ANME-1 archaea and SRB are present in low relative abundances, genome bins from the reference sites are dominated by uncultured members of NC10 and anammox Scalindua, suggesting a prevalence of nitrogen transformations for energy in non-seep pelagic sediments. This study suggests that hydrocarbon seeps can greatly change the microbial community structure by stimulating nitrogen fixation, inherently shifting the nitrogen metabolism compared to those of the reference sediments.


Assuntos
Archaea/genética , Bactérias/genética , Sedimentos Geológicos/microbiologia , Metagenoma , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/análise , Golfo do México , Hidrocarbonetos/análise , Microbiota , Fixação de Nitrogênio , Oxirredução , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/análise , Água do Mar/microbiologia
7.
Sci Rep ; 10(1): 8048, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415178

RESUMO

Oil reservoirs have been shown to house numerous microbial lineages that differ based on the in-situ pH, salinity and temperature of the subsurface environment. Lineages of Firmicutes, including Clostridiales, have been frequently detected in oil reservoirs, but are typically not considered impactful or relevant due to their spore-forming nature. Here we show, using metagenomics, a high temperature oil reservoir of marine salinity contains a microbial population that is predominantly from within the Order Clostridiales. These organisms form an oil-reservoir specific clade based on the phylogenies of both 16S rRNA genes and ribosomal proteins, which we propose to name UPetromonas tenebris, meaning they are single-celled organisms from dark rocks. Metagenome-assembled genomes (MAGs) of these Petromonas sp. were obtained and used to determine that these populations, while capable of spore-formation, were also likely replicating in situ in the reservoir. We compared these MAGs to closely related genomes and show that these subsurface Clostridiales differ, from the surface derived genomes, showing signatures of the ability to degrade plant-related compounds, whereas subsurface genomes only show the ability to process simple sugars. The estimation of in-situ replication from genomic data suggest that UPetromonas tenebris lineages are functional in-situ and may be specifically adapted to inhabit oil reservoirs.


Assuntos
Clostridium/classificação , Clostridium/genética , Microbiologia Ambiental , Metagenoma , Metagenômica , Campos de Petróleo e Gás/microbiologia , Metabolismo dos Carboidratos/genética , Clostridium/metabolismo , Biologia Computacional/métodos , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Metagenômica/métodos , Filogenia
8.
Microbiol Resour Announc ; 9(34)2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32816982

RESUMO

Here, we report the draft genome sequence of Arthrobacter sp. strain ATCC 49987, consisting of three contigs with a total length of 4.4 Mbp. Based on the genome sequence, we suggest reclassification of Arthrobacter sp. strain ATCC 49987 as Pseudarthrobacter sp. strain ATCC 49987.

9.
Front Microbiol ; 11: 588771, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343528

RESUMO

Microorganisms living in deep-oil reservoirs face extreme conditions of elevated temperature and hydrostatic pressure. Within these microbial communities, members of the order Thermotogales are predominant. Among them, the genus Pseudothermotoga is widespread in oilfield-produced waters. The growth and cell phenotypes under hydrostatic pressures ranging from 0.1 to 50 MPa of two strains from the same species originating from subsurface, Pseudothermotoga elfii DSM9442 isolated from a deep African oil-producing well, and surface, P. elfii subsp. lettingae isolated from a thermophilic sulfate-reducing bioreactor, environments are reported for the first time. The data support evidence for the piezophilic nature of P. elfii DSM9442, with an optimal hydrostatic pressure for growth of 20 MPa and an upper limit of 40 MPa, and the piezotolerance of P. elfii subsp. lettingae with growth occurring up to 20 MPa only. Under the experimental conditions, both strains produce mostly acetate and propionate as volatile fatty acids with slight variations with respect to the hydrostatic pressure for P. elfii DSM9442. The data show that the metabolism of P. elfii DSM9442 is optimized when grown at 20 MPa, in agreement with its piezophilic nature. Both Pseudothermotoga strains form chained cells when the hydrostatic pressure increases, especially P. elfii DSM9442 for which 44% of cells is chained when grown at 40 MPa. The viability of the chained cells increases with the increase in the hydrostatic pressure, indicating that chain formation is a protective mechanism for P. elfii DSM9442.

10.
Microbiol Resour Announc ; 9(38)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943555

RESUMO

We present here the draft genome sequence of a pyridine-degrading bacterium, Micrococcus luteus ATCC 49442, which was reclassified as Pseudarthrobacter sp. strain ATCC 49442 based on its draft genome sequence. Its genome length is 4.98 Mbp, with 64.81% GC content.

11.
Microbiol Resour Announc ; 8(25)2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221646

RESUMO

We report here the 4.9-Mb genome sequence of a quinoline-degrading bacterium, Rhodococcus sp. strain ATCC 49988. The draft genome data will enable the identification of genes and future genetic modification to enhance traits relevant to heteroaromatic compound degradation.

12.
Syst Appl Microbiol ; 41(6): 555-563, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29801938

RESUMO

The phylum Thermotogae gathers thermophilic, hyperthermophic, mesophilic, and thermo-acidophilic anaerobic bacteria that are mostly originated from geothermally heated environments. The metabolic and phenotypic properties harbored by the Thermotogae species questions the evolutionary events driving the emergence of this early branch of the universal tree of life. Recent reshaping of the Thermotogae taxonomy has led to the description of a new genus, Pseudothermotoga, a sister group of the genus Thermotoga within the order Thermotogales. Comparative genomics of both Pseudothermotoga and Thermotoga spp., including 16S-rRNA-based phylogenetic, pan-genomic analysis as well as signature indel conservation, provided evidence that Thermotoga caldifontis and Thermotoga profunda species should be reclassified within the genus Pseudothermotoga and renamed as Pseudothermotoga caldifontis comb. nov. (type strain=AZM44c09T) and Pseudothermotoga profunda comb. nov. (type strain=AZM34c06T), respectively. In addition, based upon whole-genome relatedness indices and DNA-DNA Hybridization results, the reclassification of Pseudothermotoga lettingae and Pseudothermotoga subterranea as latter heterotypic synonyms of Pseudothermotoga elfii is proposed. Finally, potential genetic elements resulting from the distinct evolutionary story of the Thermotoga and Pseudothermotoga clades are discussed.


Assuntos
Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/genética , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Temperatura
13.
Front Microbiol ; 7: 913, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445996

RESUMO

Reaching a depth of 713 m below the surface, the Soudan Underground Iron Mine (Soudan, MN, USA) transects a massive Archaean (2.7 Ga) banded iron formation, providing a remarkably accessible window into the terrestrial deep biosphere. Despite organic carbon limitation, metal-reducing microbial communities are present in potentially ancient anoxic brines continuously emanating from exploratory boreholes on Level 27. Using graphite electrodes deposited in situ as bait, we electrochemically enriched and isolated a novel halophilic iron-reducing Deltaproteobacterium, 'Desulfuromonas soudanensis' strain WTL, from an acetate-fed three-electrode bioreactor poised at +0.24 V (vs. standard hydrogen electrode). Cyclic voltammetry revealed that 'D. soudanensis' releases electrons at redox potentials approximately 100 mV more positive than the model freshwater surface isolate Geobacter sulfurreducens, suggesting that its extracellular respiration is tuned for higher potential electron acceptors. 'D. soudanensis' contains a 3,958,620-bp circular genome, assembled to completion using single-molecule real-time (SMRT) sequencing reads, which encodes a complete TCA cycle, 38 putative multiheme c-type cytochromes, one of which contains 69 heme-binding motifs, and a LuxI/LuxR quorum sensing cassette that produces an unidentified N-acyl homoserine lactone. Another cytochrome is predicted to lie within a putative prophage, suggesting that horizontal gene transfer plays a role in respiratory flexibility among metal reducers. Isolation of 'D. soudanensis' underscores the utility of electrode-based approaches for enriching rare metal reducers from a wide range of habitats.

14.
mBio ; 4(1): e00420-12, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23362318

RESUMO

Fe(II)-oxidizing aerobic bacteria are poorly understood, due in part to the difficulties involved in laboratory cultivation. Specific challenges include (i) providing a steady supply of electrons as Fe(II) while (ii) managing rapid formation of insoluble Fe(III) oxide precipitates and (iii) maintaining oxygen concentrations in the micromolar range to minimize abiotic Fe(II) oxidation. Electrochemical approaches offer an opportunity to study bacteria that require problematic electron donors or acceptors in their respiration. In the case of Fe(II)-oxidizing bacteria, if the electron transport machinery is able to oxidize metals at the outer cell surface, electrodes poised at potentials near those of natural substrates could serve as electron donors, eliminating concentration issues, side reactions, and mineral end products associated with metal oxidation. To test this hypothesis, the marine isolate Mariprofundus ferrooxydans PV-1, a neutrophilic obligate Fe(II)-oxidizing autotroph, was cultured using a poised electrode as the sole energy source. When cells grown in Fe(II)-containing medium were transferred into a three-electrode electrochemical cell, a cathodic (negative) current representing electron uptake by bacteria was detected, and it increased over a period of weeks. Cultures scraped from a portion of the electrode and transferred into sterile reactors consumed electrons at a similar rate. After three transfers in the absence of Fe(II), electrode-grown biofilms were studied to determine the relationship between donor redox potential and respiration rate. Electron microscopy revealed that under these conditions, M. ferrooxydans PV-1 attaches to electrodes and does not produce characteristic iron oxide stalks but still appears to exhibit bifurcate cell division. IMPORTANCE Electrochemical cultivation, supporting growth of bacteria with a constant supply of electron donors or acceptors, is a promising tool for studying lithotrophic species in the laboratory. Major pitfalls present in standard cultivation methods used for metal-oxidizing microbes can be avoided by the use of an electrode as the sole electron donor. Electrochemical cultivation also offers a window into the poorly understood metabolism of microbes such as obligate Fe(II), Mn(II), or S(0) oxidizers by replacing the electron source with the controlled surface of an electrode. The elucidation of redox-dependent behavior of these microbes could enhance industrial applications tuned to oxidation of specific metals, provide insight into how bacteria evolved to compete with oxygen for reactive metal species, and model geochemical impacts of their metabolism in the environment.


Assuntos
Eletrodos/microbiologia , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/metabolismo , Aerobiose , Transporte de Elétrons , Oxirredução
15.
Environ Microbiol Rep ; 5(6): 904-10, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24249299

RESUMO

Direct interspecies electron transfer (DIET) through biological electrical connections is an alternative to interspecies H2 transfer as a mechanism for electron exchange in syntrophic cultures. However, it has not previously been determined whether electrons received via DIET yield energy to support cell growth. In order to investigate this, co-cultures of Geobacter metallireducens, which can transfer electrons to wild-type G. sulfurreducens via DIET, were established with a citrate synthase-deficient G. sulfurreducens strain that can receive electrons for respiration through DIET only. In a medium with ethanol as the electron donor and fumarate as the electron acceptor, co-cultures with the citrate synthase-deficient G. sulfurreducens strain metabolized ethanol as fast as co-cultures with wild-type, but the acetate that G. metallireducens generated from ethanol oxidation accumulated. The lack of acetate metabolism resulted in less fumarate reduction and lower cell abundance of G. sulfurreducens. RNAseq analysis of transcript abundance was consistent with a lack of acetate metabolism in G. sulfurreducens and revealed gene expression levels for the uptake hydrogenase, formate dehydrogenase, the pilus-associated c-type cytochrome OmcS and pili consistent with electron transfer via DIET. These results suggest that electrons transferred via DIET can serve as the sole energy source to support anaerobic respiration.


Assuntos
Citrato (si)-Sintase/genética , Transporte de Elétrons , Metabolismo Energético , Geobacter/metabolismo , Acetatos/metabolismo , Anaerobiose , Citrato (si)-Sintase/deficiência , Grupo dos Citocromos c/biossíntese , Grupo dos Citocromos c/genética , Elétrons , Etanol/química , Fímbrias Bacterianas/genética , Formiato Desidrogenases/biossíntese , Formiato Desidrogenases/genética , Fumaratos/química , Geobacter/genética , Oxirredução
16.
ISME J ; 6(5): 975-83, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22113376

RESUMO

The addition of organic compounds to groundwater in order to promote bioremediation may represent a new selective pressure on subsurface microorganisms. The ability of Geobacter sulfurreducens, which serves as a model for the Geobacter species that are important in various types of anaerobic groundwater bioremediation, to adapt for rapid metabolism of lactate, a common bioremediation amendment, was evaluated. Serial transfer of five parallel cultures in a medium with lactate as the sole electron donor yielded five strains that could metabolize lactate faster than the wild-type strain. Genome sequencing revealed that all five strains had non-synonymous single-nucleotide polymorphisms in the same gene, GSU0514, a putative transcriptional regulator. Introducing the single-base-pair mutation from one of the five strains into the wild-type strain conferred rapid growth on lactate. This strain and the five adaptively evolved strains had four to eight-fold higher transcript abundance than wild-type cells for genes for the two subunits of succinyl-CoA synthase, an enzyme required for growth on lactate. DNA-binding assays demonstrated that the protein encoded by GSU0514 bound to the putative promoter of the succinyl-CoA synthase operon. The binding sequence was not apparent elsewhere in the genome. These results demonstrate that a single-base-pair mutation in a transcriptional regulator can have a significant impact on the capacity for substrate utilization and suggest that adaptive evolution should be considered as a potential response of microorganisms to environmental change(s) imposed during bioremediation.


Assuntos
Adaptação Biológica/genética , Evolução Molecular , Geobacter/genética , Ácido Láctico/metabolismo , Sequência de Aminoácidos , Pareamento de Bases , Sequência de Bases , Biodegradação Ambiental , DNA Bacteriano/genética , Geobacter/crescimento & desenvolvimento , Geobacter/metabolismo , Água Subterrânea/microbiologia , Dados de Sequência Molecular , Mutação , Óperon , Regiões Promotoras Genéticas , Análise de Sequência de DNA
17.
mBio ; 2(4): e00159-11, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21862629

RESUMO

Mechanisms for electron transfer within microbial aggregates derived from an upflow anaerobic sludge blanket reactor converting brewery waste to methane were investigated in order to better understand the function of methanogenic consortia. The aggregates were electrically conductive, with conductivities 3-fold higher than the conductivities previously reported for dual-species aggregates of Geobacter species in which the two species appeared to exchange electrons via interspecies electron transfer. The temperature dependence response of the aggregate conductance was characteristic of the organic metallic-like conductance previously described for the conductive pili of Geobacter sulfurreducens and was inconsistent with electron conduction through minerals. Studies in which aggregates were incubated with high concentrations of potential electron donors demonstrated that the aggregates had no significant capacity for conversion of hydrogen to methane. The aggregates converted formate to methane but at rates too low to account for the rates at which that the aggregates syntrophically metabolized ethanol, an important component of the reactor influent. Geobacter species comprised 25% of 16S rRNA gene sequences recovered from the aggregates, suggesting that Geobacter species may have contributed to some but probably not all of the aggregate conductivity. Microorganisms most closely related to the acetate-utilizing Methanosaeta concilii accounted for more than 90% of the sequences that could be assigned to methane producers, consistent with the poor capacity for hydrogen and formate utilization. These results demonstrate for the first time that methanogenic wastewater aggregates can be electrically conductive and suggest that direct interspecies electron transfer could be an important mechanism for electron exchange in some methanogenic systems.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Transporte de Elétrons , Metano/metabolismo , Esgotos/microbiologia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Dados de Sequência Molecular , Esgotos/química
18.
Science ; 330(6009): 1413-5, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-21127257

RESUMO

Microbial consortia that cooperatively exchange electrons play a key role in the anaerobic processing of organic matter. Interspecies hydrogen transfer is a well-documented strategy for electron exchange in dispersed laboratory cultures, but cooperative partners in natural environments often form multispecies aggregates. We found that laboratory evolution of a coculture of Geobacter metallireducens and Geobacter sulfurreducens metabolizing ethanol favored the formation of aggregates that were electrically conductive. Sequencing aggregate DNA revealed selection for a mutation that enhances the production of a c-type cytochrome involved in extracellular electron transfer and accelerates the formation of aggregates. Aggregate formation was also much faster in mutants that were deficient in interspecies hydrogen transfer, further suggesting direct interspecies electron transfer.


Assuntos
Proteínas de Bactérias/metabolismo , Grupo dos Citocromos c/metabolismo , Elétrons , Geobacter/metabolismo , Consórcios Microbianos/fisiologia , Interações Microbianas , Anaerobiose , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Evolução Biológica , Meios de Cultura , Grupo dos Citocromos c/química , Grupo dos Citocromos c/genética , Transporte de Elétrons , Etanol/metabolismo , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Hidrogênio/metabolismo , Mutação , Oxirredução , Seleção Genética
19.
mBio ; 1(2)2010 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-20714445

RESUMO

The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small amounts of 2-oxobutyrate. Electrons appearing in these products accounted for over 85% of the electrons consumed. These results demonstrate that microbial production of multicarbon organic compounds from carbon dioxide and water with electricity as the energy source is feasible.


Assuntos
Fontes de Energia Bioelétrica , Dióxido de Carbono/metabolismo , Compostos Orgânicos/metabolismo , Veillonellaceae/metabolismo , Água/metabolismo , Dióxido de Carbono/química , Eletricidade , Veillonellaceae/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA