Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Small ; 20(27): e2311569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38312092

RESUMO

Quasi-2D perovskites show great potential as photovoltaic devices with superior stability, but the power conversion efficiency (PCE) is limited by poor carrier transport. Here, it is simultaneously affected the hole transport layer (HTL) and the perovskite layer by incorporating pyridine-based materials into poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) to address the key problem above in 2D perovskites. With this approach, the enhanced optoelectronic performance of the novel PEDOT:PSS is due to electron transfer between the additives and PEDOT or PSS, as well as a dissociation between PEDOT and PSS based on experimental and theoretical studies, which facilitates the charge extraction and transfer. Concurrently, in-situ X-ray scattering studies reveal that the introduction of pyridine-based molecules alters the transformation process of the perovskite intermediate phase, which leads to a preferred orientation and ordered distribution caused by the Pb─N chemical bridge, achieving efficient charge transport. As a result, the pyridine-treated devices achieve an increased short-circuit current density (Jsc) and PCE of over 17%.

2.
Nanotechnology ; 33(8)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34788747

RESUMO

A new class of transparent graphene electrode based organic-inorganic halide perovskite photodetectors with broad spectral response is developed. These ultrasensitive devices exhibit high ON/OFF current ratio, high linear dynamic range, broad spectral range, excellent detection for weak light and easy fabrication with low-cost. Their semi-transparent feature and distinct photodetecting function for both sides would provide new applications affecting our daily lives.

3.
Inorg Chem ; 58(21): 14325-14330, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31622085

RESUMO

The photoluminescence of lanthanide ions inside fullerenes is usually very weak due to the quenching effect of the fullerene cage. In the case of Er@C82, the near-infrared emission from the Er3+ ion is completely quenched by the C82 fullerene cage. It remains challenging to turn on the photoluminescence of Er@C82 and other monometallofullerenes. In this work, we adopt a covalent modification strategy to alter the electronic structure of the fullerene cage for sensitizing the near-infrared emission of Er3+ ions in metallofullerenes Er@C2n (2n = 72, 76, and 82). After covalent modification with trifluoromethyl, phenyl, or dichlorophenyl groups, the erbium metallofullerenes exhibit photoluminescence at 1.5 µm, which is the characteristic emission of the Er3+ ion. Particularly, the otherwise nonfluorescent metallofullerene Er@C82 is transformed into fluorescent derivatives by using this strategy. The photoluminescence from the Er3+ ion is ascribed to energy transfer from the fullerene cage to the Er3+ ion. According to theoretical calculations, the sensitization of the Er3+ ion by the fullerene cage is associated with the large HOMO-LUMO gap and the closed-shell electronic structure of the metallofullerene derivatives. This work provides useful guidance for the design and synthesis of new fluorescent metallofullerenes.

4.
J Nanosci Nanotechnol ; 19(4): 1986-1995, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30486939

RESUMO

Neurodegenerative diseases have become a huge challenge to public health, such as Alzheimer's and Parkinson's diseases. Microglia driving inflammation in the central nervous system (CNS) has been involved in the pathological process of these disorders and could be novel therapy target. However, traditional anti-inflammatory drugs are not effective in alleviating neuroinflammation. In this study, a potential neuroprotective effect of a peptide-templated gold nanocluster (Au25Sv9) was investigated. Firstly, effect of the nanocluster on cytotoxins' secretion of activated BV-2 microglia cells was assessed. Results indicated Au25Sv9 nanocluster effectively attenuated the cytotoxicity of stimulated microglia cells towards neuronal cells. And the underlying mechanism of action was illuminated preliminarily. The secretions of IL-6, TNF-α and NO in activated microglia cells were inhibited by the nanocluster in a dose-dependent manner via suppressing the activation of NF-κB and p38 pathways. Moreover, the ability of the nanocluster to protect neuronal cells to against microglial cytotoxins was also evaluated. Treating neuronal cells with the nanoclusters could protect them from cytotoxicity induced by supernatants of stimulated microglia cells through up-regulating of hemeoxygenase-1 (HOX-1). This study suggested the peptide-templated gold nanocluster is able to reduce microglia-mediated cytotoxicity to neuronal cells and possess direct neuroprotective properties simultaneously. We deduce the gold nanocluster would be an effective therapeutic approach to against neuroinflammation driving neurodegenerative diseases in the future.


Assuntos
Ouro , Nanopartículas Metálicas , Microglia , Neurônios , Fármacos Neuroprotetores , Ouro/farmacologia , Humanos , Inflamação , Lipopolissacarídeos , NF-kappa B
5.
Sensors (Basel) ; 18(10)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326635

RESUMO

A flexible hot-film sensor array for wall shear stress, flow separation, and transition measurement has been fabricated and implemented in experiments. Parylene C waterproof layer is vapor phase deposited to encapsulate the sensor. Experimental studies of shear stress and flow transition on a flat plate have been undertaken in a water tunnel with the sensor array. Compared with the shear stress derived from velocity profile and empirical formulas, the measuring errors of the hot-film sensors are less than 5%. In addition, boundary layer transition of the flat plate has also been detected successfully. Ensemble-averaged mean, normalized root mean square, and power spectra of the sensor output voltage indicate that the Reynolds number when transition begins at where the sensor array located is 1.82 × 105, 50% intermittency transition is 2.52 × 105, and transition finishes is 3.96 × 105. These results have a good agreement with the transition Reynolds numbers, as measured by the Laser Doppler Velocimetry (LDV) system.

6.
Int J Mol Sci ; 19(9)2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30227604

RESUMO

Endocytosis is an important pathway to regulate the metabolism of low-density lipoprotein (LDL) in cells. At the same time, engineering nanoparticles (ENPs) enter the cell through endocytosis in biomedical applications. Therefore, a crucial question is whether the nanoparticles involved in endocytosis could impact the natural metabolism of LDL in cells. In this study, we fabricated a series of gold nanoparticles (AuNPs) (13.00 ± 0.69 nm) with varied surface charge densities. The internalized AuNPs with high-surface negative-charge densities (HSNCD) significantly reduced LDL uptake in HepG-2, HeLa, and SMMC-7721 cells compared with those cells in control group. Notably, the significant reduction of LDL uptake in cells correlates with the reduction of LDL receptors (LDL-R) on the cell surface, but there is no change in protein and mRNA of LDL-Rs. The cyclic utilization of LDL-R in cells is a crucial pathway to maintain the homoeostasis of LDL uptake. The release of LDL-Rs from LDL/LDL-R complexes in endosomes depended on reduction of the pH in the lumen. AuNPs with HSNCD hampered vacuolar-type H⁺-ATPase V1 (ATPaseV1) and ATPaseV0 binding on the endosome membrane, blocking protons to enter the endosome by the pump. Hence, fewer freed LDL-Rs were transported into recycling endosomes (REs) to be returned to cell surface for reuse, reducing the LDL uptake of cells by receptor-mediated endocytosis. The restrained LDL-Rs in the LDL/LDL-R complex were degraded in lysosomes.


Assuntos
Ouro/metabolismo , Lipoproteínas LDL/metabolismo , Nanopartículas/metabolismo , Transporte Biológico , Endocitose , Endossomos/metabolismo , Ouro/química , Células Hep G2 , Humanos , Lisossomos/metabolismo , Nanopartículas/química , Nanopartículas/ultraestrutura , Receptores de LDL/metabolismo , Eletricidade Estática , Propriedades de Superfície
7.
Anal Bioanal Chem ; 409(28): 6575-6581, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28939916

RESUMO

With their intriguing structures and properties, metallofullerenols have attracted considerable attention in biological and medical applications. Due to the increasing biomedical interest, effective detection methods are important to monitor and control metallofullerenols. However, the detection of metallofullerenols becomes very difficult after polyhydroxylated modification due to the lack of detectable features. Antibody-based immunoassay methods have been important tools for detection and will better meet the needs of analysis of metallofullerenols. Thus, the antigenicity of metallofullerenol has been studied for the first time. In this study, no immune response was detected when metallofullerenol Gd@C82(OH)x was used as immunogen. However, the polyclonal antibody against metallofullerenol was produced using metallofullerenol-KLH (keyhole limpet hemocyanin) as immunogen, indicating that metallofullerenol can act as hapten. The specificity of the obtained antibody was investigated. It has been found that the hydroxyl groups on the surface of the carbon cage, the encapsulated metal, and the size and shape of the carbon cage did not affect the recognition specificity of the antibody. Based on the obtained antibody, an indirect competitive enzyme immunoassay was developed for the determination of metallofullerenol with detection limits of 18 ng/mL in PBS. This enzyme immunoassay method was successfully used to detect metallofullerenol in serum. This work can provide an innovative way to determine metallofullerenols. Graphical abstract The polyclonal antibody against metallofullerenol was produced using metallofullerenol-KLH (keyhole limpet hemocyanin) as immunogen. Based on the obtained antibody, a competitive enzyme immunoassay was developed for the determination of metallofullerenol.


Assuntos
Formação de Anticorpos , Fulerenos/sangue , Fulerenos/imunologia , Gadolínio/sangue , Gadolínio/imunologia , Técnicas Imunoenzimáticas/métodos , Animais , Anticorpos/imunologia , Especificidade de Anticorpos , Bovinos , Feminino , Fulerenos/química , Gadolínio/química , Hemocianinas/química , Hemocianinas/imunologia , Coelhos
8.
Nanomedicine ; 12(4): 945-954, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26733256

RESUMO

Adoptive immunotherapy is a highly effective approach for cancer treatment. Several potential adoptive immunotherapies have high (though reversible) toxicities with disappointing results. Polyhydroxylated fullerenols have been demonstrated as promising antitumor drugs with low toxicities. In this study, we investigate whether polyhydroxylated fullerenols (C60(OH)22 and Gd@C82(OH)22) contribute to cancer immunotherapy by regulating macrophages. Our results show that fullerenols treatment enhances mitochondrial metabolism, phagocytosis and cytokine secretion. Moreover, activated macrophages inhibit the growth of several cancer cell types. It is likely that this inhibition is dependent on an NF-κB-mediated release of multiple cytokines. Using a lung metastasis model, we also show that autologous macrophages greatly suppress cancer cell metastasis to lung when they are activated by C60(OH)22 and Gd@C82(OH)22. More importantly, Gd@C82(OH)22 are shown to have stronger ability than C60(OH)22 to improve the macrophage function, which shed light on the rational design for nanomedicine and clinical application. FROM THE CLINICAL EDITOR: The interest in the use of immunotherapy in cancer has rekindled recently. However, many approaches have shown disappointing results. In this study, the authors investigated the effects of polyhydroxylated fullerenol nanoparticles on regulating macrophages for immunotherapy. These positive findings may point a novel way to cancer treatment.


Assuntos
Antineoplásicos/administração & dosagem , Fulerenos/administração & dosagem , Imunoterapia Adotiva , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Citocinas/biossíntese , Fulerenos/efeitos adversos , Gadolínio/química , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Nanopartículas/química , Metástase Neoplásica , Neoplasias/imunologia , Neoplasias/patologia
9.
Methods ; 67(3): 394-406, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24440483

RESUMO

The nanoparticle gadolinium endohedral metallofullerenol [Gd@C82(OH)22]n is a new candidate for cancer treatment with low toxicity. However, its anti-cancer mechanisms remain mostly unknown. In this study, we took a systems biology view of the gene expression profiles of human breast cancer cells (MCF-7) and human umbilical vein endothelial cells (ECV304) treated with and without [Gd@C82(OH)22]n, respectively, measured by the Agilent Gene Chip G4112F. To properly analyze these data, we modified a suit of statistical methods we developed. For the first time we applied the sub-sub normalization to Agilent two-color microarrays. Instead of a simple linear regression, we proposed to use a one-knot SPLINE model in the sub-sub normalization to account for nonlinear spatial effects. The parameters estimated by least trimmed squares- and S-estimators show similar normalization results. We made several kinds of inferences by integrating the expression profiles with the bioinformatic knowledge in KEGG pathways, Gene Ontology, JASPAR, and TRANSFAC. In the transcriptional inference, we proposed the BASE2.0 method to infer a transcription factor's up-regulation and down-regulation activities separately. Overall, [Gd@C82(OH)22]n induces more differentiation in MCF-7 cells than in ECV304 cells, particularly in the reduction of protein processing such as protein glucosylation, folding, targeting, exporting, and transporting. Among the KEGG pathways, the ErbB signaling pathway is up-regulated, whereas protein processing in endoplasmic reticulum (ER) is down-regulated. CHOP, a key pro-apoptotic gene downstream of the ER stress pathway, increases to nine folds in MCF-7 cells after treatment. These findings indicate that ER stress may be one important factor that induces apoptosis in MCF-7 cells after [Gd@C82(OH)22]n treatment. The expression profiles of genes associated with ER stress and apoptosis are statistically consistent with other profiles reported in the literature, such as those of HEK293T and MCF-7 cells induced by the miR-23a∼27a∼24-2 cluster. Furthermore, one of the inferred regulatory mechanisms comprises the apoptosis network centered around TP53, whose effective regulation of apoptosis is somehow reestablished after [Gd@C82(OH)22]n treatment. These results elucidate the application and development of [Gd@C82(OH)22]n and other fullerene derivates.


Assuntos
Apoptose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Biologia de Sistemas/métodos , Proliferação de Células/efeitos dos fármacos , Fulerenos/química , Fulerenos/uso terapêutico , Gadolínio/química , Gadolínio/uso terapêutico , Redes Reguladoras de Genes , Humanos , Células MCF-7 , Nanopartículas/química , Nanopartículas/uso terapêutico , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Fisiológico , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/fisiologia
10.
Anal Bioanal Chem ; 407(9): 2383-91, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25701412

RESUMO

Cisplatin is a commonly used chemotherapeutic drug in cancer treatment, whereas Gd@C82(OH)22 is a new nanomaterial anti-tumor agent. In this study, we determined intracellular Gd@C82(OH)22 and cisplatin after treatment of Hela and 16HBE cells by single cell inductively coupled plasma-mass spectrometry (SC-ICP-MS), which could provide quantitative information at a single-cell level. The cell digestion method validated the accuracy of the SC-ICP-MS. The concentrations of Gd@C82(OH)22 and cisplatin in cells at different exposure times and doses were studied. The SC-ICP-MS is a promising complement to available methods for single cell analysis and is anticipated to be applied further to biomedical research.


Assuntos
Antineoplásicos/metabolismo , Cisplatino/metabolismo , Gadolínio/metabolismo , Espectrometria de Massas/métodos , Nanoestruturas/química , Neoplasias/metabolismo , Análise de Célula Única/métodos , Antineoplásicos/análise , Linhagem Celular Tumoral , Cisplatino/análise , Gadolínio/análise , Humanos , Neoplasias/química
11.
Proc Natl Acad Sci U S A ; 109(38): 15431-6, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949663

RESUMO

Pancreatic adenocarcinoma is the most lethal of the solid tumors and the fourth-leading cause of cancer-related death in North America. Matrix metalloproteinases (MMPs) have long been targeted as a potential anticancer therapy because of their seminal role in angiogenesis and extracellular matrix (ECM) degradation of tumor survival and invasion. However, the inhibition specificity to MMPs and the molecular-level understanding of the inhibition mechanism remain largely unresolved. Here, we found that endohedral metallofullerenol Gd@C(82)(OH)(22) can successfully inhibit the neoplastic activity with experiments at animal, tissue, and cellular levels. Gd@C(82)(OH)(22) effectively blocks tumor growth in human pancreatic cancer xenografts in a nude mouse model. Enzyme activity assays also show Gd@C(82)(OH)(22) not only suppresses the expression of MMPs but also significantly reduces their activities. We then applied large-scale molecular-dynamics simulations to illustrate the molecular mechanism by studying the Gd@C(82)(OH)(22)-MMP-9 interactions in atomic detail. Our data demonstrated that Gd@C(82)(OH)(22) inhibits MMP-9 mainly via an exocite interaction, whereas the well-known zinc catalytic site only plays a minimal role. Steered by nonspecific electrostatic, hydrophobic, and specific hydrogen-bonding interactions, Gd@C(82)(OH)(22) exhibits specific binding modes near the ligand-specificity loop S1', thereby inhibiting MMP-9 activity. Both the suppression of MMP expression and specific binding mode make Gd@C(82)(OH)(22) a potentially more effective nanomedicine for pancreatic cancer than traditional medicines, which usually target the proteolytic sites directly but fail in selective inhibition. Our findings provide insights for de novo design of nanomedicines for fatal diseases such as pancreatic cancer.


Assuntos
Fulerenos/química , Nanomedicina/métodos , Nanopartículas/química , Neoplasias Pancreáticas/genética , Animais , Domínio Catalítico , Desenho de Fármacos , Matriz Extracelular/metabolismo , Gadolínio/química , Humanos , Ligação de Hidrogênio , Íons , Ligantes , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz/química , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Neovascularização Patológica , Neoplasias Pancreáticas/metabolismo , Zinco/química
12.
Small ; 10(12): 2362-72, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24619705

RESUMO

Polyhydroxylated fullerenols especially gadolinium endohedral metallofullerenols (Gd@C82(OH)22) are shown as a promising agent for antitumor chemotherapeutics and good immunoregulatory effects with low toxicity. However, their underlying mechanism remains largely unclear. We found for the first time the persistent uptake and subcellular distribution of metallofullerenols in macrophages by taking advantages of synchrotron-based scanning transmission X-ray microscopy (STXM) with high spatial resolution of 30 nm. Gd@C82(OH)22 can significantly activate primary mouse macrophages to produce pro-inflammatory cytokines like IL-1ß. Small interfering RNA (siRNA) knockdown shows that NLRP3 inflammasomes, but not NLRC4, participate in fullerenol-induced IL-1ß production. Potassium efflux, activation of P2X7 receptor and intracellular reactive oxygen speciesare also important factors required for fullerenols-induced IL-1ß release. Stronger NF-κB signal triggered by Gd@C82(OH)22 is in agreement with higher pro-IL-1ß expression than C60(OH)22. Interestingly, TLR4/MyD88 pathway but not TLR2 mediates IL-1ß secretion in Gd@C82(OH)22 exposure confirmed by macrophages from MyD88(-/-)/TLR4(-/-)/TLR2(-/-) knockout mice, which is different from C60(OH)22. Our work demonstrated that fullerenols can greatly activate macrophage and promote IL-1ß production via both TLRs/MyD88/NF-κB pathway and NLRP3 inflammasome activation, while Gd@C82(OH)22 had stronger ability C60(OH)22 due to the different electron affinity on the surface of carbon cage induced by the encaged gadolinium ion.


Assuntos
Proteínas de Transporte/metabolismo , Fulerenos/farmacologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos Peritoneais/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/fisiologia , NF-kappa B/fisiologia , Receptores Toll-Like/fisiologia , Animais , Células Cultivadas , Fulerenos/química , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
Acc Chem Res ; 46(3): 702-13, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22999420

RESUMO

Because of their unique physical, chemical, electrical, and mechanical properties, carbon nanotubes (CNTs) have attracted a great deal of research interest and have many potential applications. As large-scale production and application of CNTs increases, the general population is more likely to be exposed to CNTs either directly or indirectly, which has prompted considerable attention about human health and safety issues related to CNTs. Although considerable experimental data related to CNT toxicity at the molecular, cellular, and whole animal levels have been published, the results are often conflicting. Therefore, a systematic understanding of CNT toxicity is needed but has not yet been developed. In this Account, we highlight recent investigations into the basis of CNT toxicity carried out by our team and by other laboratories. We focus on several important factors that explain the disparities in the experimental results of nanotoxicity, such as impurities, amorphous carbon, surface charge, shape, length, agglomeration, and layer numbers. The exposure routes, including inhalation, intravenous injection, or dermal or oral exposure, can also influence the in vivo behavior and fate of CNTs. The underlying mechanisms of CNT toxicity include oxidative stress, inflammatory responses, malignant transformation, DNA damage and mutation (errors in chromosome number as well as disruption of the mitotic spindle), the formation of granulomas, and interstitial fibrosis. These findings provide useful insights for de novo design and safe application of carbon nanotubes and their risk assessment to human health. To obtain reproducible and accurate results, researchers must establish standards and reliable detection methods, use standard CNT samples as a reference control, and study the impact of various factors systematically. In addition, researchers need to examine multiple types of CNTs, different cell lines and animal species, multidimensional evaluation methods, and exposure conditions. To make results comparable among different institutions and countries, researchers need to standardize choices in toxicity testing such as that of cell line, animal species, and exposure conditions. The knowledge presented here should lead to a better understanding of the key factors that can influence CNT toxicity so that their unwanted toxicity might be avoided.


Assuntos
Nanotubos de Carbono/toxicidade , Ligação Competitiva , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Humanos , Inflamação , Modelos Biológicos , Nanotubos de Carbono/química
14.
J Nanosci Nanotechnol ; 14(7): 5370-4, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24758033

RESUMO

A new electron transfer dyad, covalently linked C70-corrole, was prepared via C70 and 10-(4-Formylaryl)-5,15-bis(pentafluorophenyl). The structures and the properties of the new material were investigated by HPLC, MALDI-TOF-MS, UV-Vis-NIR spectroscopy, NMR, fluorescence analysis and CV/DPV. The free-energy of C70-corrole calculated by employing the redox potentials and singlet excited-state energy suggested the possibility of electron transfer from the excited singlet state of corrole to the fullerene entity, which agreed with the results of the theoretical calculation.

15.
J Nanosci Nanotechnol ; 14(6): 4022-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24738346

RESUMO

Macrophages can be recruited to tumor tissues and play a supportive role in the invasion microenvironment. Since nanoparticles can be easily endocytosed by this kind of cell, the advances in nanotechnology offer a new sight to target macrophages in tumor tissues for diminishing harmful phenotypes. In the xenograft mouse model, we found that metallofullerol Gd@C82(OH)22 can not only reduced the macrophage density in the tumor tissue, but also decreased the expression of matrix metalloproteinase-9 produced by this kind of cell. To verify the phenomenon, a macrophage cell line, RAW264.7 was employed in the experiment, in vivo. Gd@C82(OH)22 nanoparticles can be engulfed by macrophages and the quantity was measured by inductively coupled plasma mass spectrometry. Fluorescent staining result showed that the particle induced the cells to adopt an elongated spindle morphology. The morphology alteration implied that the cells undergo mesenchymal migration, which is assisted by matrix metalloproteinase-9 to break down the extracellular matrix. But the reverse transcription PCR and western blots results indicated that the expression of matrix metalloproteinase-9 was reduced after the treatment of Gd@C82(OH)22. Thus, transwell migration assay indicated that macrophages were constrained to migrate through the collagen matrix.


Assuntos
Gadolínio/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Nanopartículas/administração & dosagem , Neoplasias Experimentais/prevenção & controle , Neoplasias Experimentais/secundário , Microambiente Tumoral/efeitos dos fármacos , Animais , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Tamanho Celular/efeitos dos fármacos , Fulerenos/administração & dosagem , Macrófagos/citologia , Camundongos , Neoplasias Experimentais/patologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38669604

RESUMO

New binary carbon composites (GDY-NCNTs and GDY-CNTs) with a three-dimensional porous structure, which are synthesized by an in situ growth method, are adopted in this article. The GDY-NCNTs composites exhibit excellent specific capacitance performance (679 F g-1, 2 mV s-1, 139% increase compared to GDY-CNTs) and good cycling stability (with a capacity retention rate of up to 116% after 10000 cycles). The three-dimensional porous structure not only promotes ion transfer and increases the effective specific surface area to improve its specific capacitance performance but also adapts to the volume expansion and contraction during the charging and discharging process to improve its cycling stability. The presence of nitrogen doping in the carbon nanotubes of GDY-NCNTs increases the surface defects of the composites, provides more electrochemical points, and improves the surface wettability of the composites, further improving the electrochemical performance of the composites.

17.
Adv Mater ; : e2313991, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692575

RESUMO

DNA double-strand breaks (DSBs) yield highly determines radiotherapy efficacy. However, improving the inherent radiosensitivity of tumor DNA to promote radiation-induced DSBs remains a challenge. Using theoretical and experimental models, the underexplored impact of Z-DNA conformations on radiosensitivity, yielding higher DSBs than other DNA conformations, is discovered. Thereout, a radiosensitization strategy focused on inducing Z-DNA conformation, utilizing CBL@HfO2 nanocapsules loaded with a Z-DNA inducer CBL0137, is proposed. A hollow mesoporous HfO2 (HM-HfO2) acts as a delivery and an energy depositor to promote Z-DNA breakage. The nanocapsule permits the smart DSBs accelerator that triggers its radiosensitization with irradiation stimulation. Impressively, the CBL@HfO2 facilitates the B-Z DNA conformational transition, augmenting DSBs about threefold stronger than irradiation alone, generating significant tumor suppression with a 30% cure rate. The approach enables DSBs augmentation by improving the inherent radiosensitivity of DNA. As such, it opens up an era of Z-DNA conformation manipulation in radiotherapy.

18.
Nanotechnology ; 24(35): 355401, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23928751

RESUMO

In this study, we fabricated inverted organic photovoltaic cells with the structure ITO/carbon nanotubes (CNTs)-TiO(X)/P3HT:PCBM/MoO3/Al by spin casting CNTs-TiO(X) nanocomposite (CNTs-TiO(X)) as the electron injection layer onto ITO/glass substrates. The power conversion efficiency (PCE) of the 0.1 wt% single-walled nanotubes (SWNTs)-TiO(X) nanocomposite device was almost doubled compared with the TiO(X) device, but with increasing concentration of the incorporated SWNTs in the TiO(X) film, the performance of the devices appeared to decrease rapidly. Devices with multi-walled NTs in the TiO(X) film have a similar trend. This phenomenon mainly depends on the inherent physical and chemical characteristics of CNTs such as their high surface area, their electron-accepting properties and their excellent carrier mobility. However, with increasing concentration of CNTs, CNTs-TiO(X) current leakage pathways emerged and also a recombination of charges at the interfaces. In addition, there was a significant discovery. The incorporated CNTs were highly conducive to enhancing the degree of crystallinity and the ordered arrangement of the P3HT in the active layers, due to the intermolecular π-π stacking interactions between CNTs and P3HT.

19.
Proc Natl Acad Sci U S A ; 107(16): 7449-54, 2010 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-20368438

RESUMO

Cisplatin is a chemotherapeutic drug commonly used in clinics. However, acquired resistance confines its application in chemotherapeutics. To overcome the acquired resistance to cisplatin, it is reasoned, based on our previous findings of mediation of cellular responses by [Gd@C(82)(OH)(22)](n) nanoparticles, that [Gd@C(82)(OH)(22)](n) may reverse tumor resistance to cisplatin by reactivating the impaired endocytosis of cisplatin-resistant human prostate cancer (CP-r) cells. Here we report that exposure of the CP-r PC-3-luc cells to cisplatin in the presence of nontoxic [Gd@C(82)(OH)(22)](n) not only decreased the number of surviving CP-r cells but also inhibited growth of the CP-r tumors in athymic nude mice as measured by both optical and MRI. Labeling the CP-r PC-3 cells with transferrin, an endocytotic marker, demonstrated that pretreatment of the CP-r PC-3-luc cells with [Gd@C(82)(OH)(22)](n) enhanced intracellular accumulation of cisplatin and formation of cisplatin-DNA adducts by restoring the defective endocytosis of the CP-r cancer cells. The results suggest that [Gd@C(82)(OH)(22)](n) nanoparticles overcome tumor resistance to cisplatin by increasing its intracellular accumulation through the mechanism of restoring defective endocytosis. The technology can be extended to other challenges related to multidrug resistance often found in cancer treatments.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Endocitose , Nanopartículas Metálicas/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Tratamento Farmacológico/instrumentação , Tratamento Farmacológico/métodos , Humanos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Nus , Nanomedicina , Nanotecnologia/métodos , Transferrina/metabolismo
20.
J Nanosci Nanotechnol ; 12(9): 7233-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23035458

RESUMO

Different fullerene-grafted poly(N-vinylcarbazole) was synthesized by free radical polymerization and the influence of the amount of initiator, the reaction time and the reaction temperature on the polymerization was studied. Metallofullerene-grafted polymer (Gd@C82-PVK) was firstly synthesized and characterized by GPC, UV-vis, FTIR, DSC, XPS. The results demonstrated that the fullerenes had chemically combined with PVK. Fluorescence spectra suggested that the grafted fullerenes had certain influence on the fluorescence properties of the polymer. This is due to the better electron-attractive ability of fullerenes, which contributed a lot to form the electron donor-acceptor systems in fullerene-grafted poly(N-vinylcarbazole). Potential applications of this kind of materials in optical and memory devices were expected.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA