Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(9): e2205960, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538742

RESUMO

The growing urgence of information protection promotes continuously the development of information-encryption technique. To date, hydrogels have become an emerging candidate for advanced information-encryption materials, because of their unique stimulus responsiveness. However, current methods to design multi-level information-encrypted hydrogels usually need sophisticated chemistry or experimental setup. Herein, a novel strategy is reported to fabricate hydrogels with multi-level information encryption/decryption functions through spatially programming the polymorphic crystal phases. As homocrystalline and stereocomplex crystal phases in fluorescent hydrogels have different solvent stabilities, the transparency and fluorescence of the hydrogels can be regulated, thereby enabling the multi-level encryption/decryption processes. Moreover, the structural origins behind these processes are discussed. It is believe that this work will inspire future research on developing advanced information-encryption materials upon programming the polymer crystal structure.

2.
IEEE Trans Neural Netw Learn Syst ; 34(9): 6428-6442, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34982701

RESUMO

Interval type-2 fuzzy neural networks (IT2FNNs) usually stack adequate fuzzy rules to identify nonlinear systems with high-dimensional inputs, which may result in an explosion of fuzzy rules. To cope with this problem, a self-organizing IT2FNN, based on the information aggregation method (IA-SOIT2FNN), is developed to avoid the explosion of fuzzy rules in this article. First, a relation-aware strategy is proposed to construct rotatable type-2 fuzzy rules (RT2FRs). This strategy uses the individual RT2FR, instead of multiple standard fuzzy rules, to interpret interactive features of high-dimensional inputs. Second, a comprehensive information evaluation mechanism, associated with the interval information and rotation information of RT2FR, is developed to direct the structural adjustment of IA-SOIT2FNN. This mechanism can achieve a compact structure of IA-SOIT2FNN by growing and pruning RT2FRs. Third, a multicriteria-based optimization algorithm is designed to optimize the parameters of IA-SOIT2FNN. The algorithm can simultaneously update the rotatable parameters and the conventional parameters of RT2FR, and further maintain the accuracy of IA-SOIT2FNN. Finally, the experiments showcase that the proposed IA-SOIT2FNN can compete with the state-of-the-art approaches in terms of identification performance.

3.
ACS Macro Lett ; 12(8): 1138-1143, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503873

RESUMO

Upon cooling, semicrystalline polymers experience crystallization and form alternatively stacked layers consisting of thin crystal lamellae and amorphous ones. The unique morphology, crystallinity, and crystallization kinetics highly depend on the molecular weight. Therefore, it is deduced that entanglement impacts crystallization kinetics, as well as hierarchically crystalline structures. However, the impact of entanglement on folded crystalline chains has not been well understood due to experimental difficulties. In this work, chain-folding structures for seven 13C CH3 labeled poly(l-lactic acid)s with various molecular weights (Mws) were investigated by 13C-13C double quantum NMR spectroscopy. As a result, chain-folding events were categorized into three different Mw regimes: (i) The lowest Mw sample (2K g/mol) adopts an extended chain conformation (folding number, n = 0) (regime I); (ii) Intermediate Mw ones possess mixtures of non- and once-folded structures, and the once-folded fraction suddenly increases above the entanglement length (Me), up to Mw = 45K g/mol (regime II); (iii) The high Mw ones (Mw > 45K g/mol) adopt the highest chance for an adjacent re-entry structure with n = 1.0 in the well-developed entangled network (regime III). It was suggested that entanglement induces folding of the semicrystalline polymer.

4.
Regen Biomater ; 10: rbac097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683735

RESUMO

Transplantation of adult spinal cord tissue (aSCT) is a promising treatment for spinal cord injury (SCI) basing on various types of neural cells and matrix components inside aSCT. However, long-term systemic administration of immunosuppressors (e.g. tacrolimus, TAC) is required for the survival of allogeneic tissue, which often associated with severe side effects such as infection, liver damageand renal failure. In this study, a triglycerol monostearate (TGM)-based TAC delivery system (e.g. TAC@TGM) with high drug loading concentration was developed, which possessed injectable properties as well as sustainable and immune-responsive drug release behaviors. In complete transected SCI model, locally injected TAC@TGM could reduce the infiltration of inflammation cells, enhance the survival of transplanted aSCT (e.g. Tuj-1+ and NF+ neurons) and promote the recovery of locomotor function. Moreover, controlled release of TAC by TAC@TGM attenuated side effects of TAC on liver and kidneys compared with traditional systemic administration. More importantly, the developed TAC@TGM system provided a facile single dose of long-term immunosuppressive effect not just for aSCT transplantation, but also for other tissue/organ and cell transplantations.

5.
ACS Macro Lett ; 12(10): 1324-1330, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37713680

RESUMO

Side substitution is an effective method for the chemical modification and functionalization of linear polyesters. The presence of side groups can have a profound effect on the crystalline structure and phase transition of semicrystalline polyesters. Herein, we synthesized the long-spaced polyesters with -OH and -CH3 side groups and various methylene segment lengths and studied the effects of the side groups on the crystal polymorph and phase transition of substituted polyesters. The substituted polyesters grow in the thermally stable phase (form I) at a higher temperature. However, the polyesters crystallize in a metastable hexagonal phase (form II) with trans chain conformation at a lower temperature. The metastable form II transforms into the more stable form I during long-time annealing or upon heating; this phase transition is accompanied by chain tilting and crystal lamellar thickening. This study has elucidated the critical role of side groups in the polymorphic crystallization and phase transition of linear polyesters.

6.
ACS Macro Lett ; 12(12): 1629-1635, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-37967041

RESUMO

Polymorphism is ubiquitous in polymer crystallization due to the diversified chain conformations and interchain packings in polymer crystals. Controlling chain conformation is effective in tailoring the crystal polymorphism of polymers, which, however, is challenging at the molecular level. Herein, we have synthesized poly(butylene adipate) (PBA)-based copolymers containing C═C units and demonstrated the important role of trans/cis-C═C units in tuning the chain conformation and crystal polymorphism of polymers. Both PBA-based trans- and cis-copolymers show isodimorphic crystallization behavior with the partial inclusion of C═C units in PBA crystals. The presence of trans-C═C units favors the formation of metastable ß-crystals of PBA and retards the ß-to-α crystal transition upon heating due to the highly conformational matching between trans-C═C units and ß-crystals. Conversely, the incorporation of cis-C═C units destroys the regularity of the trans conformation and favors the growth of α-crystals of PBA. This work has elucidated the crucial role of local chain conformation in the crystal polymorphism of polymers.

7.
J Phys Chem Lett ; 14(22): 5181-5187, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37253264

RESUMO

The melting of semicrystalline polymers is a typical multistep process and involves a series of intermediate melt states. However, the structural characteristics of the intermediate polymer melt is unclear. Herein, we choose polymorphic trans-1,4-polyisoprene (tPI) as a model polymer system and elucidate the structures of the intermediate polymer melt and their strong effects on the following crystallization process. We find that the metastable ß crystals of the tPI melt first into an intermediate state and then recrystallize in new crystals upon thermal annealing. The intermediate melt shows multilevel structural order at the chain level depending on the melting temperature. The conformationally ordered melt can memorize the initial crystal polymorph and accelerate the crystallization process, while the ordered melt without the conformational order can only enhance the crystallization rate. This work provides deep insight into the multilevel structural order of polymer melts and its strong memory effects on the crystallization process.

8.
Biomed Mater ; 17(6)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35985317

RESUMO

Interface tissue engineering is a rapidly growing field that aims to develop engineered tissue alternates with the goal of promoting integration between multiple tissue types. Engineering interface tissues is a challenging process, which requires biomaterials with specific composition, stiffness, cell types, and biochemical molecules. Among these, stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior. Especially these substrates with graded stiffness are advantageous since they allow multiple cell types differentiation and the following tissue development. In this review, we highlight various types of manufacturing techniques that can be applied to fabricate scaffolds with stiffness gradient, discuss methods to characterize them, and gradient biomaterials for regulating cellular behavior including attachment, migration, proliferation, and differentiation. We also address fundamentals of interface tissue organization, and stiffness gradient biomaterials for interface tissue regeneration. Potential challenges and future prospects of this emerging field are also included.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/química , Diferenciação Celular , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Cicatrização
9.
Artigo em Inglês | MEDLINE | ID: mdl-37015616

RESUMO

Interval type-2 fuzzy neural network (IT2FNN) is widely used to model nonlinear systems. Unfortunately, the gradient descent-based IT2FNN with uncertain variances always suffers from low convergence speed due to its inherent singularity. To cope with this problem, a nonsingular gradient descent algorithm (NSGDA) is developed to update IT2FNN in this article. First, the widths of type-2 fuzzy rules are transformed into root inverse variances (RIVs) that always satisfy the sufficient condition of differentiability. Second, the singular RIVs are reformulated by the nonsingular Shapley-based matrices associated with type-2 fuzzy rules. It averts the convergence stagnation caused by zero derivatives of singular RIVs, thereby sustaining the gradient convergence. Third, an integrated-form update strategy (IUS) is designed to obtain the derivatives of parameters, including RIVs, centers, weight coefficients, deviations, and proportionality coefficient of IT2FNN. These parameters are packed into multiple subvariable matrices, which are capable to accelerate gradient convergence using parallel calculation instead of sequence iteration. Finally, the experiments showcase that the proposed NSGDA-based IT2FNN can improve the convergence speed through the improved learning algorithm.

10.
Animals (Basel) ; 13(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36611625

RESUMO

The forest musk deer (Moschus berezovskii) is an endangered animal that produces musk that is utilized for medical applications worldwide, and this species primarily lives in China. Animal-derived musk can be employed as an important ingredient in Chinese medicine. To investigate the properties of bone marrow mesenchymal stem cells (MSCs) obtained from the bone marrow of forest deer for future application, MSCs were isolated and cultivated in vitro. The properties and differentiation of these cells were assessed at the cellular and gene levels. The results show that 81,533 expressed genes were detected by RNA sequencing, and marker genes of MSCs were expressed in the cells. Karyotype analysis of the cells determined the karyotype to be normal, and marker proteins of MSCs were observed to be expressed in the cell membranes. Cells were differentiated into osteoblasts, adipocytes, and chondroblasts. The expression of genes related to osteoblasts, adipocytes, and chondroblasts was observed to be increased. The results of this study demonstrate that the properties of the cells isolated from bone marrow were in keeping with the characteristics of MSCs, providing a possible basis for future research.

11.
ACS Macro Lett ; 11(2): 257-263, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35574778

RESUMO

Polymorphism and crystal transition are common phenomena of semicrystalline polymers. These two behaviors are known to be controlled by the nucleation and chain mobility of polymers, both of which are constrained by the chain entanglement at the molecular level. However, the role of chain entanglement in polymorphic crystallization and crystal phase transition of polymers has not been well understood. Herein, we use isotactic polybutene-1 (PB-1) as a model polymorphic polymer and present the crucial role of chain entanglement in the polymorphic crystallization kinetics and solid-solid phase transition. A series of less-entangled PB-1 with different entanglement degrees were successfully prepared by freeze-drying the polymer dilute solution. Compared to the bulk sample and re-entangled one, chain disentangling of PB-1 suppressed the crystallization kinetics of form II but significantly increased the phase transition rate and final transition degree from form II to form I. The disentangling-promoted II-I phase transition originated from the reduced nucleation barrier and enhanced chain mobility. This work would advance the in-depth understanding on the formation and transition mechanisms of polymorphic polymer crystals at the molecular level.

12.
ACS Macro Lett ; 10(8): 1023-1028, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35549120

RESUMO

Stereocomplex (SC) crystallization between polymer enantiomers has opened a promising avenue for preparing high-performance materials. However, high-crystallinity SCs are difficult to achieve for high-molecular-weight (HMW) enantiomeric blends of chiral polymers [e.g., poly(lactic acid)]. Despite extensive studies, why HMW enantiomeric blends have difficulty in SC crystallization has not been clarified. Herein, we chose the HMW poly(l-lactic acid)/poly(d-lactic acid) (PLLA/PDLA) 1/1 blend as the model system and demonstrated the crucial role of chain entanglement in regulating SC crystallization. PLLA/PDLA blends with various entanglement degrees were prepared by freeze-drying. We observed that disentangling promoted not only the crystallization rate but also the crystallinity of SCs in both the nonisothermal and isothermal processes. The less-entangled samples crystallized exclusively as the high-crystallinity SCs at different temperatures, in contrast to the predominant homocrystallization that occurred in the common entangled samples. This study provides deep insight into the SC crystallization mechanism of polymers and paves the way for future research attempting to prepare SC materials.


Assuntos
Poliésteres , Polímeros , Cristalização , Poliésteres/química , Polímeros/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA