Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Angew Chem Int Ed Engl ; 63(8): e202317968, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38179800

RESUMO

Dearomative spirocyclization reactions represent a promising means to convert arenes into three-dimensional architectures; however, controlling the regioselectivity of radical dearomatization with nonactivated arenes to afford the spirocyclizative 1,2-difunctionalization other than its kinetically preferred 1,4-difunctionalization is exceptionally challenging. Here we disclose a novel strategy for dearomative 1,2- or 1,4-amidoximation of (hetero)arenes enabled by direct visible-light-induced homolysis of N-NO bonds of nitrosamides, giving rise to various highly regioselective amidoximated spirocycles that previously have been inaccessible or required elaborate synthetic efforts. The mechanism and origins of the observed regioselectivities were investigated by control experiments and density functional theory calculations.

2.
Anal Chem ; 95(36): 13456-13462, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37624577

RESUMO

Artificial solid-state nanochannels have garnered considerable attention as promising nanofluidic tools for ion/molecular detection, DNA sequencing, and biomimicry. Recently, nanofluidic devices have emerged as cost-effective detection tools for heavy metal ions by modifying stimuli-responsive materials. In this work, high-purity glycyl-l-histidyl-l-lysine (GHK) peptide is synthesized by using 7-diphenylphosphonooxycoumarin-4-methanol (DPCM) as a protecting group and auxiliary carrier by homogeneous synthesis of photocleavable groups. Subsequently, we developed a GHK-modified asymmetric nanochannel nanofluidic diode by covalently attaching the GHK peptide to the inner surface of the nanochannels. This modification facilitated specific recognition and ultra-trace level detection of Cu2+ ions, achieving a detection limit of 10-15 M. Due to the robust complexing ability between Cu2+ and GHK peptide, the GHK-modified asymmetric nanochannels can form GHK-Cu complexes on the inner surface of nanochannels when Cu2+ passes through the nanochannels. This results in changes of current-potential (I-V) properties, which facilitated Cu2+ detection. Theoretical calculations confirmed the high affinity of the GHK peptide for Cu2+, thereby ensuring excellent Cu2+ selectivity. To evaluate the applicability of our system for detecting Cu2+ in real-world scenarios, we analyzed the concentration of Cu2+ in tap water. The GHK-Cu complexes could be dissociated by adding EDTA to the solution, enabling the regeneration and reuse of this ultrasensitive and label-free Cu2+ detection system using GHK-modified asymmetric multi-nanochannels. We anticipate that the GHK-modified asymmetric nanochannels will find future applications in the label-free detection of Cu2+ in domestic water.

3.
Angew Chem Int Ed Engl ; 61(44): e202210924, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36098932

RESUMO

Graphene nanoribbons (GNRs) are promising in organic optoelectronic materials, and their properties largely depend on the size, edge, and conformation. Herein, the fully armchair-edged GNRs (AGNRs) with lengths up to 2.65 nm by using a Cu-catalyzed deoxygenative coupling as a key step. The resulting AGNRs (2HBT, 3HBT, and 4HBT) possess highly twisted π-scaffolds, and the torsion angles between the adjacent triphenylene moieties are larger than 32°, as proved by crystallographic analyses. Theoretical and spectroscopic studies show that the butoxy groups endow AGNRs with electron-rich features, the extension of the π-system from 2HBT to 4HBT reinforces S0 →S1 excitation, and the distortion of the π-scaffold enhances the fluorescence quantum yield (ΦF ). In particular, 4HBT has the lowest oxidation potential (Eox 1 =0.55 V vs. SCE) and displays red fluorescence with a ΦF value of 81 %.

4.
Angew Chem Int Ed Engl ; 59(27): 11080-11086, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32219946

RESUMO

Organic solid-state semiconductor lasers are attracting ever-increasing interest for their potential application in future photonic circuits. Despite the great progress made in recent years, an organic laser from 3D chiral structures has not been achieved. Now, the first example of an organic nano-laser from the micro-helix structure of an achiral molecule is presented. Highly regular micro-helixes with left/right-handed helicity from a distyrylbenzene derivative (HM-DSB) were fabricated and characterized under microscope spectrometers. These chiral micro-helixes exhibit unique photonic properties, including helicity-dependent circularly polarized luminescence (CPL), periodic optical waveguiding, and length-dependent amplified spontaneous emission (ASE) behavior. The successful observation of laser behavior from the organic micro-helix extends our understanding to morphology chirality of organic photonic materials and provides a new design strategy towards chiral photonic circuits.

5.
J Am Chem Soc ; 141(22): 8816-8824, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31117642

RESUMO

We report a strategy to construct a dopamine-releasing gold surface mimicking a presynaptic membrane on a microfluidic chip to simulate in vivo neural signaling. We constructed dopamine self-assembled monolayers (DA SAMs) by electrochemical deprotection of methyl group-protected DA SAMs on a gold surface. Electrochemically controllable release of DA SAMs can be realized by applying nonhydrolytic negative potential on the gold surface. Our method in constructing DA SAMs avoids the polymerization and protonation of DA molecules which may lead to the failure of the DA SAM formation. By combining microfluidics, we realized spatial and temporal controllable release of DA by electrochemistry from the gold surface. Furthermore, by culturing neurons on the patterned DA SAMs, the interface between the DA SAMs and the neurons could serve as a presynaptic membrane, and the spatiotemporal release of DA could modulate the neuron activity with high precision. Our study holds great promise in the fields of neurobiology research and drug screening.


Assuntos
Biomimética , Membrana Celular/metabolismo , Dopamina/química , Ouro/química , Eletroquímica , Eletrodos , Iminas/química , Solventes/química , Propriedades de Superfície
6.
Angew Chem Int Ed Engl ; 56(42): 13031-13035, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28763147

RESUMO

The design and synthesis of high-performance n-type organic semiconductors are important for the development of future organic optoelectronics. Facile synthetic routes to reach the K-region of pyrene and produce 4,5,9,10-pyrene diimide (PyDI) derivatives are reported. The PyDI derivatives exhibited efficient electron transport properties, with the highest electron mobility of up to 3.08 cm2 V-1 s-1 . The tert-butyl-substituted compounds (t-PyDI) also showed good one- and two-photon excited fluorescence properties. The PyDI derivatives are a new family of aromatic diimides that may exhibit both high electron mobility and good light-emitting properties, thus making them excellent candidates for future optoelectronics.

7.
J Am Chem Soc ; 136(31): 11050-6, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25025269

RESUMO

We report an electrochemically switched smart surface for controlled peptide immobilization and conformation control. This dynamic surface is based on self-assembled monolayers (SAMs) containing surface-bound trimethoxybenzene moieties, which can undergo electrochemically modulated surface activation to be stepwisely converted to two catechol derivatives. This new smart surface can be used to realize stepwise immobilization of a peptide, and more importantly, to control peptide conformation on a surface. We demonstrate herein that with one electrochemical activation step, a linear peptide containing an RGD sequence can be attached onto the SAMs. With the subsequence activation step, the attached linear RGD peptide can be converted into cyclic conformation. The SAMs bounded with linear and cyclic RGD exhibit different adhesion behaviors to fibroblasts cells. The reaction procedure can be well-monitored by cyclic voltammetry (CV), electrochemical surface enhanced Raman microscopy (EC-SERS), and X-ray photoelectron spectroscopy (XPS). It is believed this robust smart surface can find wide applications in surface immobilization of bioactive moieties.


Assuntos
Proteínas Imobilizadas/química , Oligopeptídeos/química , Benzeno/química , Ciclização , Eletroquímica , Modelos Moleculares , Conformação Proteica , Propriedades de Superfície
8.
Anal Methods ; 16(17): 2654-2660, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38623688

RESUMO

Nickel stands out as one of the prevalent heavy metal ionic pollutants found in water. It is urgent to devise a simple, efficient, budget-friendly, highly-selective and proficient method for detecting Ni(II). This work reports an approach to design a nanofluidic diode for the ultrasensitive and label-free detection of nickel ions based on layer-by-layer assembly of polyarginine (PA) and polyglutamic acid (γ-PGA) on the inner surface of asymmetric nanochannels. We can tune the adsorption/desorption characteristics of the asymmetric nanochannels for Ni2+ by adjusting the pH changes, i.e., the PA-γ-PGA modified nanochannels adsorb Ni2+ at pH 6 and desorb at pH 3 in aqueous solution. This pivotal adjustment facilitates the reusable and specific detection of nickel ions with a detection limit of 1 × 10-8 M. Moreover, the system demonstrates commendable stability and recyclability, enhancing its practical applicability. This innovative system holds promise for recognizing and detecting nickel ions in diverse environments such as water, blood, and cells. The robust performance and adaptability of our proposed system instill confidence in its potential for future applications.

9.
Langmuir ; 29(17): 5199-206, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23557099

RESUMO

We report an investigation of an electrochemically switched heterocyclization reaction on hydroquinone-terminated self-assembled monolayers (SAMs). This reaction involves an electrochemically modulated hydroquinone/benzoquinone transformation step in the SAMs and a subsequent heterocyclization step taking place between the electrochemically generated benzoquinone moieties in SAMs and l-cysteine in solution. The reaction process was monitored by XPS and electrochemical surface-enhanced Raman spectroscopy (EC-SERS). The surface reaction proceeds as a two-step reaction to give a benzothiazine product, which is in contrast to the much more complicated multiple step reactions in solution. This result suggests that the tight molecular packing in the SAMs does not hinder the intramolecular heterocylization reaction, but prevents the intermolecular coupling reaction from happening. This work provides insights to the control and detection of biomolecule related multistep reactions occurring at solid-liquid interface.


Assuntos
Benzoquinonas/química , Cisteína/química , Técnicas Eletroquímicas , Ouro/química , Hidroquinonas/síntese química , Ciclização , Hidroquinonas/química , Estrutura Molecular , Propriedades de Superfície
10.
Analyst ; 138(19): 5576-9, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23912180

RESUMO

A new multisignaling molecular probe DFDB was designed for the selective detection of Zn(2+). DFDB can be synthesized by a simple one-step reaction in high yield. Theoretical calculation suggests a novel sandwich structure of the DFDB·Zn(2+) complex.

11.
Chem Sci ; 13(34): 9914-9920, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36128249

RESUMO

Singlet exciton fission (SF) is believed to have the potential to break the Shockley-Queisser limit for third-generation solar cell devices, so it has attracted great attention. Conventional linear acene based SF materials generally suffer from low triplet energy and poor photostability. We report herein two flavanthrene derivatives, EH-Fla and TIPS-Fla, as new photostable singlet exciton fission materials. These N-doped two-dimensional angular fused acenes have three sets of aromatic Clar sextets, making them significantly more stable than linear acenes with only one sextet. Time-resolved spectroscopy characterization reveals that the SF process occurs in the polycrystalline films of EH-Fla and TIPS-Fla, with maximal triplet yields of 32% and 159%, respectively. The SF processes of these two molecules are mediated by excimer states. In EH-Fla, the low-lying excimer prevents the SF process from occurring effectively, resulting in a low triplet yield. In contrast, the excimer state in TIPS-Fla is mixed with strong CT coupling, which prompts efficient SF and results in a high triplet yield. Our results show that flavanthrene is a promising SF chromophore for photoenergy conversion applications, while a fine-tune of the intermolecular interaction is crucial for achieving high SF efficiency.

12.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 3): o592-3, 2010 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-21580355

RESUMO

In the title compound, C(20)H(14), a naphthalene ring system is linked at the 2-position to the 2-C atom of the five-membered ring of an azulene unit. The compound crystallizes with two reasonably similar mol-ecules in the asymmetric unit. Neither mol-ecule is perfectly planar: the r.m.s. deviations from the best fit planes through all non-H atoms are 0.092 and 0.091 Šfor the two mol-ecules. The dihedral angle between the mol-ecular planes is 49.60 (4)°. The naphthalene and azulene ring systems are inclined at dihedral angles of 6.54 (12) and 5.68 (12)° in the two mol-ecules. The crystal structure exhibits two sets of parallel layers, a typical edge-to-face herringbone packing arrangement. The structure is stabilized by an extensive series of weak C-H⋯π inter-actions.

13.
ACS Omega ; 5(9): 4501-4506, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32175497

RESUMO

A smart nanofluidic device attracts attention as it enables to control the physicochemical properties and transportation phenomena, by using stimuli-responsive materials. This work reports a bioinspired modification of a conical ion track-etched polyethylene terephthalate nanopore surface by coating a layer of poly-l-lysine (PLL), which is a commonly used coating in biotechnology to achieve a dual-responsive nanofluidic channel by pH or temperature. The rectification of ionic transportation can be reversed by assembling PLL because of the change of surface bonds from the carboxyl to amine group. The PLL-modified nanopore becomes nonconductive as an "OFF" state at pH 11.5 and at a temperature of 70 °C in solution. The ionic transport in nanopores can be switched to the "ON" (conductive) state, by either decreasing pH or temperature. The transitions between "ON" and "OFF" states present excellent reversibility, which make the PLL-modified nanopores a promising smart nanofluidic device that can be used for drug delivery or biomimic ion/mass transport in future, besides the good biocompatibility and ease of use of PLL modification.

14.
Nanoscale Horiz ; 5(10): 1420-1429, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32856666

RESUMO

Sb nanosheets, also known as antimonene, have received ever-growing consideration as a promising new type of two-dimensional (2D) material due to their many attractive properties. However, how their nonlinear optical (NLO) properties are affected by their nanosheet structure and measurement conditions remains unclear. Herein, we report a successful size-selective production method for Sb nanosheets, which is based on a combination of lithium ion intercalation, solvent exfoliation and size selection centrifugation. This high-yield and size-selective preparation method enables fundamental investigation on the relation of the intrinsic optical properties of Sb nanosheets. Nanosecond Z-scan measurements revealed a unique size-dependent broadband NLO response. When the average size is reduced from 3 micrometers to 50 nanometers, the Sb nanosheets exhibit a clear transition from saturable absorption to reversed saturable absorption. Ultrafast transient absorption spectroscopic investigation indicated that exciton cooling is significantly faster in a small nanosheet than in large ones, revealing that the different exciton relaxation dynamic plays key roles in the distinct size-tunable nonlinear optical response. This work paves new ways towards the mass production and practical application of antimonene.

15.
J Phys Chem Lett ; 10(21): 6572-6577, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31594309

RESUMO

New all-inorganic perovskites like Cs4PbBr6 provide rich luminescent tools and particularly novel physical insights, including their zero-dimensional structure and controversial emitting mechanism. The ensuing debate over the origin of the luminescence of Cs4PbBr6 inspired us to tackle the issue through fabricating high-quality Cs4PbBr6 single crystals and employing ultrafast dynamics study. Upon photoexcitation, Cs4PbBr6 underwent dynamics steps distinct from that of CsPbBr3, including exciton migration to the defect level on a time scale of several hundred femtoseconds, exciton relaxation within the defect states on the picosecond time scale, and exciton recombination from the subnanosecond to nanosecond time scale. The observation disclosed that crystal defects of Cs4PbBr6 induced green emission while CsPbBr3 mainly relied on quantum confinement to emit at room temperature. The study provides an in-depth understanding of the photoinduced multistep dynamics steps of Cs4PbBr6 associated with display and photovoltaic applications, establishing Cs4PbBr6 as a new candidate for uses associated with the perovskite family of materials.

16.
Zhonghua Yi Xue Za Zhi ; 88(4): 265-7, 2008 Jan 22.
Artigo em Chinês | MEDLINE | ID: mdl-18361840

RESUMO

OBJECTIVE: To understand the infection and epidemiology of norovirus and rotavirus and enteral adenovirus among adult with sporadic viral gastroenteritis in Beijing and provide theoretical basis for clinical prevention and control. METHODS: Stool specimens were collected from all 312 sporadic outpatient among adult with non-cholera watery diarrhea in Infectious Disease Department of Peking University People's Hospital 2005-2006. PAGE were used for detection of rotavirus RNA in stool specimens; R-Biopharm RIDASCREEN norovirus and RIDASCREEN adenovirus were used for detection of norovirus and adenovirus. RESULTS: Rotavirus RNA was not present in all 312 stool specimens; Norovirus was present in 17.6% (22/125) and in 32.4% (11/34) in October; Adenovirus was present in 3.3% (3/92); Mixed infections of norovirus and adenovirus was present in 1 stool specimen. CONCLUSIONS: Norovirus is more common etiologic agents of sporadic acute viral gastroenteritis among adult in Beijing, The infection peak of norovirus is in autumn. Maybe the infection of rotavirus is few.


Assuntos
Infecções por Caliciviridae/virologia , Gastroenterite/virologia , Norovirus/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções por Caliciviridae/epidemiologia , China/epidemiologia , Fezes/virologia , Feminino , Gastroenterite/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Rotavirus/isolamento & purificação , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/virologia , Adulto Jovem
17.
Nanoscale ; 10(45): 21106-21115, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30325397

RESUMO

The rediscovery of black phosphorus (BP) has expanded the 2D family into Group 15 (Nitrogen Group) elements, among which bismuthene is the latest member with extraordinary opto-electronic, catalytic and biocompatible properties and potential as a 2D topological insulator. However, bulk Bi is not easily mechanically exfoliated as its counterpart of BP. Thus, to date, the reports on 2D Bi fabrication are rare, and investigations on its nonlinear optical properties are even less. Herein, we rationally designed a new strategy combining acid-interaction and liquid exfoliation to successfully transform metal bulk Bi into few-layer semiconductor, which resulted in unseen opto-electronic properties, such as tunable nonlinear responses all the way to the near-infrared (NIR) region. This band is critical for telecommunication and military purposes, but currently, functioning materials are extremely scarce. The origin of this strong saturable absorption was thoroughly explored through time-resolved spectroscopy spanning from the fs to µs timescale, which indicated ultrafast fs to ps carrier dynamics in the early stage and long exciton bleaching recovery up to µs. As a proof-of-concept application, the as-prepared 2D Bi was employed as a saturable absorber to mode-lock a Tm-doped fiber laser and successfully realized a 2 µm NIR-wavelength output. This study not only offers an effective and scalable method to fabricate the new 2D family member bismuthene with extraordinary stability, but also explores its strong and broad nonlinear responses extending into the NIR region and fundamental photoinduced dynamics, which demonstrate the full potential of 2D Bi for application in opto-electronic devices and nonlinear optics.

18.
ACS Appl Mater Interfaces ; 10(11): 9587-9594, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29489322

RESUMO

Much effort has been devoted to the development of new donor materials for small-molecule organic solar cells due to their inherent advantages of well-defined molecular weight, easy purification, and good reproducibility in photovoltaic performance. Herein, we report two small-molecule donors that are compatible with both fullerene and nonfullerene acceptors. Both molecules consist of an (E)-1,2-di(thiophen-2-yl)ethane-substituted (TVT-substituted) benzo[1,2-b:4,5-b']dithiophene (BDT) as the central unit, and two rhodanine units as the terminal electron-withdrawing groups. The central units are modified with either alkyl side chains (DRBDT-TVT) or alkylthio side chains (DRBDT-STVT). Both molecules exhibit a medium bandgap with complementary absorption and proper energy level offset with typical acceptors like PC71BM and IDIC. The optimized devices show a decent power conversion efficiency (PCE) of 6.87% for small-molecule organic solar cells and 6.63% for nonfullerene all small-molecule organic solar cells. Our results reveal that rationally designed medium-bandgap small-molecule donors can be applied in high-performance small-molecule organic solar cells with different types of acceptors.

19.
J Phys Chem Lett ; 8(7): 1610-1614, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28326786

RESUMO

A facile and green mechanosynthesis strategy free of solvent and high reaction temperature was developed to fabricate highly emissive cesium lead halide perovskite (CsPbX3) quantum dots (QDs). Their composition can be adjusted conveniently simply through mechanically milling/grinding stoichiometric combinations of raw reagents, thereby introducing a broad luminescence tunability of the product with adjustable wavelength, line width, and photoluminescence quantum yield. Desired CsPbX3 QDs "library" can thus be readily constructed in a way like assembling Lego building blocks. Hence, the method offered new avenues in the preparation of multicomponent cocrystals, adding one appealing apparatus to the tool box of perovskite-type QDs synthesis. Intriguingly, photoinduced dynamic study revealed the hole-transfer process of the as-prepared QDs toward electron donors, indicative of their potential in charge-transfer-based applications such as light-harvesting devices and photocatalysis.

20.
J Mater Chem B ; 4(45): 7226-7232, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263724

RESUMO

We report the in vivo distribution, toxicity and metabolism of micro-sized fluorescent organic particles and their applications in cerebral blood flow tracing. The fluorescent microparticles exhibit bright fluorescence, good photo-stability and low toxicity; therefore, they are ideal for long-term non-invasive in vivo tracing. In contrast to conventional fluorescent labeling agents, which stain the entire blood vessel, the tracer microparticles can be easily tracked individually and provide vital information about blood flow behavior. Furthermore, we observed stimulated emission from these microparticles in living animals. These microparticles can provide unprecedented contrast for simultaneous observation of the distribution of blood vessels and the dynamics of microcirculation. Pathological examination revealed that the injected microparticles eventually collected in the spleen and liver. We found no observable toxicity of the microparticles to cells or mouse organs. We demonstrate that these fluorescent microparticles are suitable for applications in the field of non-intrusive blood flow tracing and could play a complementary role to traditional imaging agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA