Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 17(50): e2103262, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34672425

RESUMO

The manufacturing of 3D and conformal metamaterials remains a major challenge. The projection micro-stereolithography 3D printing technology combined with the liquid metal filling method is employed here to fabricate the metamaterials, which are characterized with embedded features that can effectively protect the metal resonance layer from external influence, and integrated molding of macro-micro structures and function-structure. To demonstrate the robustness and flexibility of the proposed method, three types of metamaterials are fabricated: 3D orthogonal split-ring resonator metamaterial, bionic compound eye conformal metamaterial, and a five-layer broadband conformal metamaterial in the form of hemispherical moth-eye, which are costly, tedious, and time consuming in conventional fabrication methods. And the layout of the filling channel is optimized and the polydimethylsiloxane coating post-treatment process is applied to smooth the surface roughness caused by the staircase effect of 3D printing to improve the transmission performance of metamaterial devices. The transmission properties are measured using terahertz time-domain spectroscopy system and the experimental results show that the method proposed in this paper makes metamaterial manufacture no longer limited to complex structures, which effectively expands the application range of metamaterials.


Assuntos
Impressão Tridimensional , Estereolitografia
2.
Micromachines (Basel) ; 7(5)2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30404262

RESUMO

The LC resonator-based passive pressure sensor attracts much attention because it does not need a power source or lead wires between the sensing element and the readout system. This paper presents the design and manufacturing of a passive pressure sensor that contains a variable capacitor and a copper-electroplated planar inductor. The sensor is fabricated using silicon bulk micro-machining, electroplating, and anodic bonding technology. The finite element method is used to model the deflection of the silicon diaphragm and extract the capacitance change corresponding to the applied pressure. Within the measurement range from 5 to 100 kPa, the sensitivity of the sensor is 0.052 MHz/kPa, the linearity is 2.79%, and the hysteresis error is 0.2%. Compared with the sensitivity at 27 °C, the drop of output performance is 3.53% at 140 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA