Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(18): 7761-7768, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34460270

RESUMO

Hot carrier harvest could save 30% energy loss in solar cells. So far, however, it is still unreachable as the photoexcited hot carriers are short-lived, ∼1 ps, determined by a rapid relaxation process, thus invalidating any reprocessing efforts. Here, we propose and demonstrate a feasible route to reserve hot electrons for efficient collection. It is accomplished by an intentional mix of cubic zinc-blend and hexagonal wurtzite phases in III-V semiconductor nanowires. Additional energy levels are then generated above the conduction band minimum, capturing and storing hot electrons before they cool down to the band edges. We also show the superiority of core/shell nanowire (radial heterostructure) in extracting hot electrons. The strategy disclosed here may offer a unique opportunity to modulate hot carriers for efficient solar energy harvest.

2.
Langmuir ; 37(21): 6373-6379, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34000803

RESUMO

The stability of two-dimensional clusters (2DCs) at the interface between ionic crystals and their solutions was investigated by molecular dynamics simulations. We found that 2DCs show a remarkable feature of odd-even alternation in stability. In NaCl and NaBr systems, the clusters containing an odd number of ions are more stable than those with an even number of ions, while in KCl systems, it is the other way round. Accordingly, the stability of water molecules in the first hydration shell of 2DCs also shows an odd-even alternation, which is consistent with the associated 2DCs. The odd-even alternation is discussed based on a competition mechanism between two factors: the Coulomb repulsion in charged 2DCs and the interaction between charges and water dipoles. Our discussion indicates that this odd-even alternation should be a universal feature in similar systems and would be important for understanding the nucleation and crystallization of solutions on ionic crystal surfaces.

3.
ACS Omega ; 8(6): 5715-5721, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36816647

RESUMO

In this work, the structural parameters and electronic properties of PtX2 and Janus PtXY (X, Y = S, Se, and Te) are studied based on the density functional theory. The phonon spectra and the Born criteria of the elastic constant of these six monolayers confirm their stability. All PtX2 and Janus PtXY monolayers show an outstanding stretchability with Young's modulus ranging from 61.023 to 82.124 N/m, about one-fifth that of graphene and half that of MoS2, suggesting highly flexible materials. Our first-principles calculations reveal that the pristine PtX2 and their Janus counterparts are indirect semiconductors with their band gap ranging from 0.760 to 1.810 eV at the Perdew-Burke-Ernzerhof level (1.128-2.580 eV at the Heyd-Scuseria-Ernzerhof level). By applying biaxial compressive and tensile strain, the electronic properties of all PtX2 and Janus PtXY monolayers are widely tunable. Under small compressive strain, PtX2 and Janus PtXY structures remain indirect semiconductors. PtTe2, PtSeTe, and PtSTe monolayers undergo a semiconducting to metallic transition when the strain reaches -6, -8, and -10%, respectively. Interestingly, there is a transition from the indirect semiconductor to a quasi-direct one for all PtX2 and Janus PtXY monolayers when the tensile strain is applied.

4.
J Phys Chem Lett ; 14(7): 1840-1847, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36779693

RESUMO

The defect types in layered semiconductors can be identified by matching the scanning transmission electron microscopy (STEM) images with the structures from first-principles simulations. In a PVD-grown MoS2 monolayer, the MoS2 antisite (one Mo replaces two S) is recognized as being dominant, because its calculated structure matches the distortive structure in STEM images. Therefore, MoS2 has received much attention in MoS2-related defect engineering. We reveal that MoS (one Mo replaces one S) may be mistaken for MoS2, because ionized MoS also has similar structural distortion and can easily be ionized under electron irradiation. Unfortunately, the radiation-induced ionization and associated structural distortion of MoS were overlooked in previous studies. Because the formation energy of MoS is much lower than that of MoS2, it is more likely to exist as the dominant defect in MoS2. Our results highlight the necessity of considering the defect ionization and associated structural distortion in STEM identification of defects in layered semiconductors.

5.
Phys Rev Lett ; 107(2): 025505, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21797620

RESUMO

Nonequilibrium kinetic properties of alloy crystal-melt interfaces are calculated by molecular-dynamics simulations. The relationships between the interface velocity, thermodynamic driving force, and solute partition coefficient are computed and analyzed within the framework of kinetic theories accounting for solute trapping and solute drag. The results show a transition to complete solute trapping at high growth velocities, establish appreciable solute drag at low growth velocities, and provide insights into the nature of crystalline anisotropies and solute effects on interface mobilities.

6.
Sci Rep ; 10(1): 3414, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098987

RESUMO

The diagonalization of matrices may be the top priority in the application of modern physics. In this paper, we numerically demonstrate that, for real symmetric random matrices with non-positive off-diagonal elements, a universal scaling relationship between the eigenvector and matrix elements exists. Namely, each element of the eigenvector of ground states linearly correlates with the sum of matrix elements in the corresponding row. Although the conclusion is obtained based on random matrices, the linear relationship still keeps for non-random matrices, in which off-diagonal elements are non-positive. The relationship implies a straightforward method to directly calculate the eigenvector of ground states for one kind of matrices. The tests on both Hubbard and Ising models show that, this new method works excellently.

7.
ACS Omega ; 4(20): 18692-18698, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31737830

RESUMO

The interface structure between NaCl crystal and its solution has been investigated at the saturated concentration of 298 K by molecular dynamics simulations. We have found that there are many fine structures at this complex interface. Near the surface of crystal, most of Na+ only coordinate with water molecules, while almost all Cl- coordinate with Na+ in addition to water molecules. An ion coordinating with more water molecules is farther away from the epitaxial position of lattice. As approaching to the interface, the first hydration shell of ions has the tendency of being ordered, while the orientation of dipole of water molecules in the first hydration shell becomes more disordered than that in the solution. Generally, the first hydration shell of Na+ is less affected by nearest Cl-, whereas the first hydration shell of Cl- is significantly affected by nearest Na+.

8.
J Phys Chem B ; 111(9): 2309-12, 2007 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-17291034

RESUMO

The melting of NiN clusters (N = 29, 50-150) has been investigated by using molecular dynamics (MD) simulations with a quantum corrected Sutton-Chen (Q-SC) many-body potential. Surface melting for Ni147, direct melting for Ni79, and the glass transition for Ni29 have been found, and those melting points are equal to 540, 680, and 940 K, respectively. It shows that the melting temperatures are not only size-dependent but also a symmetrical structure effect; in the neighborhood of the clusters, the cluster with higher symmetry has a higher melting point. From the reciprocal slopes of the caloric curves, the specific heats are obtained as 4.1 kB per atom for the liquid and 3.1 kB per atom for the solid; these values are not influenced by the cluster size apart in the transition region. The calculated results also show that latent heat of fusion is the dominant effect on the melting temperatures (Tm), and the relationship between S and L is given.

9.
Sci Rep ; 4: 6541, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25286970

RESUMO

Grain boundaries (GBs) in graphene prepared by chemical vapor deposition (CVD) greatly degrade the electrical and mechanical properties of graphene and thus hinder the applications of graphene in electronic devices. The seamless stitching of graphene flakes can avoid GBs, wherein the identical orientation of graphene domain is required. In this letter, the graphene orientation on one of the most used catalyst surface - Cu(100) surface, is explored by density functional theory (DFT) calculations. Our calculation demonstrates that a zigzag edged hexagonal graphene domain on a Cu(100) surface has two equivalent energetically preferred orientations, which are 30 degree away from each other. Therefore, the fusion of graphene domains on Cu(100) surface during CVD growth will inevitably lead to densely distributed GBs in the synthesized graphene. Aiming to solve this problem, a simple route, that applies external strain to break the symmetry of the Cu(100) surface, was proposed and proved efficient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA