Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
BMC Cancer ; 15: 422, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25994202

RESUMO

BACKGROUND: The hypoxia-activated prodrug TH-302 is reduced at its nitroimidazole group and selectively under hypoxic conditions releases the DNA cross-linker bromo-isophosphoramide mustard (Br-IPM). Here, we have explored the effect of Chk1 inhibition on TH-302-mediated pharmacological activities. METHODS: We employed in vitro cell viability, DNA damage, cellular signaling assays and the in vivo HT29 human tumor xenograft model to study the effect of Chk1inhibition on TH-302 antitumor activities. RESULTS: TH-302 cytotoxicity is greatly enhanced by Chk1 inhibition in p53-deficient but not in p53-proficient human cancer cell lines. Chk1 inhibitors reduced TH-302-induced cell cycle arrest via blocking TH-302-induced decrease of phosphorylation of histone H3 and increasing Cdc2-Y15 phosphorylation. Employing the single-cell gel electrophoresis (comet) assay, we observed a potentiation of the TH-302 dependent tail moment. TH-302 induced γH2AX and apoptosis were also increased upon the addition of Chk1 inhibitor. Potentiation of TH-302 cytotoxicity by Chk1 inhibitor was only observed in cell lines proficient in, but not deficient in homology-directed DNA repair. We also show that combination treatment led to lowering of Rad51 expression levels as compared to either agent alone. In vivo data demonstrate that Chk1 inhibitor enhances TH-302 anti-tumor activity in p53 mutant HT-29 human tumor xenografts, supporting the hypothesis that these in vitro results can translate to enhanced in vivo efficacy of the combination. CONCLUSIONS: TH-302-mediated in vitro and in vivo anti-tumor activities were greatly enhanced by the addition of Chk1 inhibitors. The preclinical data presented in this study support a new approach for the treatment of p53-deficient hypoxic cancers by combining Chk1 inhibitors with the hypoxia-activated prodrug TH-302.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Nitroimidazóis/farmacologia , Mostardas de Fosforamida/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Tiofenos/farmacologia , Ureia/análogos & derivados , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Dano ao DNA/efeitos dos fármacos , Feminino , Células HT29 , Histonas/metabolismo , Humanos , Camundongos , Camundongos Nus , Mutação , Nitroimidazóis/uso terapêutico , Fosfoproteínas/metabolismo , Mostardas de Fosforamida/uso terapêutico , Fosforilação , Inibidores de Proteínas Quinases/uso terapêutico , Rad51 Recombinase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tiofenos/uso terapêutico , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Ureia/farmacologia , Ureia/uso terapêutico
2.
Blood ; 119(24): 5782-94, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22394600

RESUMO

The spread of multiple myeloma (MM) involves (re)circulation into the peripheral blood and (re)entrance or homing of MM cells into new sites of the BM. Hypoxia in solid tumors was shown to promote metastasis through activation of proteins involved in the epithelial-mesenchymal transition (EMT) process. We hypothesized that MM-associated hypoxic conditions activate EMT-related proteins and promote metastasis of MM cells. In the present study, we have shown that hypoxia activates EMT-related machinery in MM cells, decreases the expression of E-cadherin, and, consequently, decreases the adhesion of MM cells to the BM and enhances egress of MM cells to the circulation. In parallel, hypoxia increased the expression of CXCR4, consequently increasing the migration and homing of circulating MM cells to new BM niches. Further studies to manipulate hypoxia to regulate tumor dissemination as a therapeutic strategy are warranted.


Assuntos
Transição Epitelial-Mesenquimal , Mieloma Múltiplo/patologia , Animais , Medula Óssea/patologia , Caderinas/metabolismo , Adesão Celular , Hipóxia Celular , Linhagem Celular Tumoral , Quimiotaxia , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos SCID , Mieloma Múltiplo/sangue , Proteínas de Neoplasias/metabolismo , Receptores CXCR4/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral
3.
Blood ; 116(9): 1524-7, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20530289

RESUMO

Hypoxia is associated with increased metastatic potential and poor prognosis in solid tumors. In this study, we demonstrated in the murine 5T33MM model that multiple myeloma (MM) cells localize in an extensively hypoxic niche compared with the naive bone marrow. Next, we investigated whether hypoxia could be used as a treatment target for MM by evaluating the effects of a new hypoxia-activated prodrug TH-302 in vitro and in vivo. In severely hypoxic conditions, TH-302 induces G(0)/G(1) cell-cycle arrest by down-regulating cyclinD1/2/3, CDK4/6, p21(cip-1), p27(kip-1), and pRb expression, and triggers apoptosis in MM cells by up-regulating the cleaved proapoptotic caspase-3, -8, and -9 and poly ADP-ribose polymerase while having no significant effects under normoxic conditions. In vivo treatment of 5T33MM mice induces apoptosis of the MM cells within the bone marrow microenvironment and decreases paraprotein secretion. Our data support that hypoxia-activated treatment with TH-302 provides a potential new treatment option for MM.


Assuntos
Apoptose/efeitos dos fármacos , Hipóxia/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Nitroimidazóis/farmacologia , Oxigênio/metabolismo , Mostardas de Fosforamida/farmacologia , Pró-Fármacos/farmacologia , Animais , Western Blotting , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/metabolismo , Neovascularização Patológica , Células Tumorais Cultivadas , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Sleep ; 41(9)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29860347

RESUMO

Narcolepsy type 1 (Na-1) and 2 (Na-2) are characterized by an inability to sustain wakefulness and are likely caused by degeneration of orexin neurons. Near complete orexin neurodegeneration depletes orexin-A from the cerebrospinal fluid and produces Na-1. The pathophysiology of Na-2 is less understood but has been hypothesized to be due to less extensive loss of orexin neurotransmission. The orexin-tTA; TetO diphtheria toxin A mouse allows conditional control over the extent and timing of orexin neurodegeneration. To evaluate partial ablation of the orexin field as a model of Na-2, orexin-A positive cell counts and sleep/wake phenotypes (determined by piezoelectric monitoring) were correlated within individual mice after different protocols of diet-controlled neurodegeneration. Partial ablations that began during the first 8 days of study were 14% larger than partial ablations induced during the last 8 days of study, 6 weeks later and prior to sacrifice of all mice, suggesting orexin-A positive cell death continued despite the resumption of conditions intended to keep orexin neurons intact. Sleep/wake of mice with 71.0% orexin-A positive cell loss, initiated at the beginning of study, resembled that of orexin-intact controls more than mice with near complete neurodegeneration. Conversely, mice with 56.6% orexin-A positive cell loss, created at the end of study, had sleep/wake phenotypes that were similar to those of mice with near complete orexin-A positive cell loss. Collectively, these results suggest that compensatory wake-promotion develops in mice that have some critical portion of their orexinergic system remaining after partial ablation.


Assuntos
Modelos Animais de Doenças , Narcolepsia/genética , Doenças Neurodegenerativas/genética , Orexinas/genética , Fenótipo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Narcolepsia/metabolismo , Narcolepsia/fisiopatologia , Doenças Neurodegenerativas/metabolismo , Neurônios/fisiologia , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Orexinas/deficiência , Sono/fisiologia , Vigília/fisiologia
6.
Neuro Oncol ; 20(9): 1231-1239, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-29415215

RESUMO

Background: Anti-angiogenic therapy is known to induce a greater degree of hypoxia, including in glioblastoma (GBM). Evofosfamide (Evo) is a hypoxia-activated prodrug which is reduced, leading to the release of the alkylating agent bromo-isophosphoramide mustard. We assessed the safety, tolerability, preliminary efficacy, and biomarkers of Evo plus bevacizumab (Bev) in Bev-refractory GBM. Methods: Twenty-eight patients with Bev-refractory GBM were enrolled in a dose escalation study receiving from 240 mg/m2 (cohort 1) to 670 mg/m2 (cohort 4) of Evo every 2 weeks in combination with Bev. Patients deemed surgical candidates underwent a single dose of Evo or placebo with pimonidazole immediately prior to surgery for biomarker evaluation, followed by dose escalation upon recovery. Assessments included adverse events, response, and survival. Results: Evo plus Bev was well tolerated up to and including the maximum dose of 670 mg/m2, which was determined to be the recommended phase II dose. Overall response rate was 17.4%, with disease control (complete response, partial response, and stable disease) observed in 14 (60.9%) of the 23 patients. The ratio of enhancement to non-enhancement was significant on log-rank analysis with time to progression (P = 0.023), with patients having a ratio of less than 0.37 showing a median progression-free survival of 98 days versus 56 days for those with more enhancement. Conclusions: Evo plus Bev was well tolerated in patients with Bev-refractory GBM, with preliminary evidence of activity that merits further investigation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Hipóxia , Recidiva Local de Neoplasia/tratamento farmacológico , Terapia de Salvação , Adulto , Idoso , Bevacizumab/administração & dosagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Terapia Combinada , Feminino , Seguimentos , Glioblastoma/patologia , Glioblastoma/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/cirurgia , Nitroimidazóis/administração & dosagem , Mostardas de Fosforamida/administração & dosagem , Prognóstico
7.
Transl Oncol ; 11(4): 911-919, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29803017

RESUMO

Antiangiogenic therapy has shown promising results in preclinical and clinical trials. However, tumor cells acquire resistance to this therapy by gaining ability to survive and proliferate under hypoxia induced by antiangiogenic therapy. Combining antiangiogenic therapy with hypoxia-activated prodrugs can overcome this limitation. Here, we have tested the combination of antiangiogenic drug sunitinib in combination with hypoxia-activated prodrug evofosfamide in neuroblastoma. In vitro, neuroblastoma cell line SK-N-BE(2) was 40-folds sensitive to evofosfamide under hypoxia compared to normoxia. In IV metastatic model, evofosfamide significantly increased mice survival compared to the vehicle (P=.02). In SK-N-BE(2) subcutaneous xenograft model, we tested two different treatment regimens using 30 mg/kg sunitinib and 50 mg/kg evofosfamide. Here, sunitinib therapy when started along with evofosfamide treatment showed higher efficacy compared to single agents in subcutaneous SK-N-BE(2) xenograft model, whereas sunitinib when started 7 days after evofosfamide treatment did not have any advantage compared to treatment with either single agent. Immunofluorescence of tumor sections revealed higher number of apoptotic cells and hypoxic areas compared to either single agent when both treatments were started together. Treatment with 80 mg/kg sunitinib with 50 mg/kg evofosfamide was significantly superior to single agents in both xenograft and metastatic models. This study confirms the preclinical efficacy of sunitinib and evofosfamide in murine models of aggressive neuroblastoma. Sunitinib enhances the efficacy of evofosfamide by increasing hypoxic areas, and evofosfamide targets hypoxic tumor cells. Consequently, each drug enhances the activity of the other.

8.
Clin Cancer Res ; 23(2): 536-548, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27440271

RESUMO

PURPOSE: To evaluate safety and characterize anticancer efficacy of hepatic hypoxia-activated intra-arterial therapy (HAIAT) with evofosfamide in a rabbit model. EXPERIMENTAL DESIGN: VX2-tumor-bearing rabbits were assigned to 4 intra-arterial therapy (IAT) groups (n = 7/group): (i) saline (control); (ii) evofosfamide (Evo); (iii) doxorubicin-lipiodol emulsion followed by embolization with 100-300 µm beads (conventional, cTACE); or (iv) cTACE and evofosfamide (cTACE + Evo). Blood samples were collected pre-IAT and 1, 2, 7, and 14 days post-IAT. A semiquantitative scoring system assessed hepatocellular damage. Tumor volumes were segmented on multidetector CT (baseline, 7/14 days post-IAT). Pathologic tumor necrosis was quantified using manual segmentation on whole-slide images. Hypoxic fraction (HF) and compartment (HC) were determined by pimonidazole staining. Tumor DNA damage, apoptosis, cell proliferation, endogenous hypoxia, and metabolism were quantified (γ-H2AX, Annexin V, caspase-3, Ki-67, HIF1α, VEGF, GAPDH, MCT4, and LDH). RESULTS: cTACE + Evo showed a similar profile of liver enzymes elevation and pathologic scores compared with cTACE. Neither hematologic nor renal toxicity were observed. Animals treated with cTACE + Evo demonstrated smaller tumor volumes, lower tumor growth rates, and higher necrotic fractions compared with cTACE. cTACE + Evo resulted in a marked reduction in the HF and HC. Correlation was observed between decreases in HF or HC and tumor necrosis. cTACE + Evo promoted antitumor effects as evidenced by increased expression of γ-H2AX, apoptotic biomarkers, and decreased cell proliferation. Increased HIF1α/VEGF expression and tumor glycolysis supported HAIAT. CONCLUSIONS: HAIAT achieved a promising step towards the locoregional targeting of tumor hypoxia. The favorable toxicity profile and enhanced anticancer effects of evofosfamide in combination with cTACE pave the way towards clinical trials in patients with liver cancer. Clin Cancer Res; 23(2); 536-48. ©2016 AACR.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Hepáticas/terapia , Nitroimidazóis/administração & dosagem , Mostardas de Fosforamida/administração & dosagem , Hipóxia Tumoral , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA Tumoral Circulante/genética , Terapia Combinada , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Óleo Etiodado/administração & dosagem , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Coelhos
9.
Cancer Biol Ther ; 17(4): 371-80, 2016 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-26818215

RESUMO

Evofosfamide (TH-302) is a hypoxia-activated prodrug of the cytotoxin bromo-isophosphoramide. In hypoxic conditions Br-IPM is released and alkylates DNA. Ifosfamide is a chloro-isophosphoramide prodrug activated by hepatic Cytochrome P450 enzymes. Both compounds are used for the treatment of cancer. Ifosfamide has been approved by the FDA while evofosfamide is currently in the late stage of clinical development. The purpose of this study is to compare efficacy and safety profile of evofosfamide and ifosfamide in preclinical non-small cell lung cancer H460 xenograft models. Immunocompetent CD-1 mice and H460 tumor-bearing immunocompromised nude mice were used to investigate the safety profile. The efficacy of evofosfamide or ifosfamide, alone, and in combination with docetaxel or sunitinib was compared in ectopic and intrapleural othortopic H460 xenograft models in animals exposed to ambient air or different oxygen concentration breathing conditions. At an equal body weight loss level, evofosfamide showed greater or comparable efficacy in both ectopic and orthotopic H460 xenograft models. Evofosfamide, but not ifosfamide, exhibited controlled oxygen concentration breathing condition-dependent antitumor activity. However, at an equal body weight loss level, ifosfamide yielded severe hematologic toxicity when compared to evofosfamide, both in monotherapy and in combination with docetaxel. At an equal hematoxicity level, evofosfamide showed superior antitumor activity. These results indicate that evofosfamide shows superior or comparable efficacy and a favorable safety profile when compared to ifosfamide in preclinical human lung carcinoma models. This finding is consistent with multiple clinical trials of evofosfamide as a single agent, or in combination therapy, which demonstrated both anti-tumor activity and safety profile without severe myelosuppression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ifosfamida/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Nitroimidazóis/uso terapêutico , Mostardas de Fosforamida/uso terapêutico , Pró-Fármacos/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Humanos , Ifosfamida/administração & dosagem , Ifosfamida/farmacologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Camundongos , Nitroimidazóis/administração & dosagem , Nitroimidazóis/farmacologia , Mostardas de Fosforamida/administração & dosagem , Mostardas de Fosforamida/farmacologia , Pró-Fármacos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Am J Cancer Res ; 5(7): 2139-55, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26328245

RESUMO

Tumors often consist of hypoxic regions which are resistant to chemo- and radiotherapy. Evofosfamide (also known as TH-302), a 2-nitroimidazole triggered hypoxia-activated prodrug, preferentially releases the DNA cross-linker bromo-isophosphoramide mustard in hypoxic cells. The intracellular kinase mTOR plays a key role in multiple pathways which are important in cancer progression. Here we investigated the enhanced efficacy profile and possible mechanisms of evofosfamide in combination with mTOR inhibitor (mTORi) everolimus or temsirolimus in renal cell carcinoma (RCC) xenograft models. The antitumor activities of the mTORi everolimus or temsirolimus alone, evofosfamide alone, or the combination were investigated in the 786-O and Caki-1 RCC cells in vitro and in vivo xenograft models. Two schedules were tested in which evofosfamide was started on the same day as the mTORi or 1 week after. Combination mechanisms were investigated by measuring a panel of pharmacodynamic biomarkers by immunohistochemistry. Antitumor efficacy in both RCC xenograft models was enhanced by the combination of evofosfamide and mTORi. Evofosfamide reduced the increased hypoxia induced by mTORi. Combination treatment induced increased DNA damage, decreased cell proliferation, and decreased survivin. Addition of mTORi did not change evofosfamide-mediated cytotoxicity in 786-O or Caki-1 cells in vitro which might suggest cell non-autonomous effects, specifically increased tumor hypoxia, are important for the in vivo combination activity. Taken together, evofosfamide potentiates the antitumor efficacy of mTOR inhibitors and inhibits the increased tumor hypoxia caused by mTOR inhibition. These studies provide a translational rationale for combining evofosfamide with mTOR inhibitors in clinical studies.

11.
Cancer Biol Ther ; 16(3): 438-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25679067

RESUMO

Tumors often contain hypoxic regions resistant to chemo- and radiotherapy. TH-302 (T) is an investigational hypoxia-activated prodrug that selectively releases the DNA cross-linker bromo-isophosphoramide mustard under hypoxic conditions. This study evaluated the efficacy and safety profile of combining T with gemcitabine (G) and nab-paclitaxel (nP) in human pancreatic ductal adenocarcinoma (PDAC) xenograft models in mice. Antitumor activity of the G + nP + T triplet was assessed and compared with T-alone or the G + nP doublet in the Hs766t, MIA PaCa-2, PANC-1, and BxPC-3 PDAC xenograft models. Efficacy was assessed by tumor growth kinetic analysis. Body weight, blood cell counts, blood chemistry, and the von Frey neuropathy assay were analyzed to evaluate safety profiles. Pharmacodynamic changes after the treatment were determined by immunohistochemistry of cell proliferation, DNA damage, apoptosis, hypoxia, and tumor stroma density. The G + nP + T triplet exhibited enhanced efficacy compared with T-alone or the G + nP doublet. Compared with vehicle (V), G + nP induced body weight loss, reduced neutrophil and lymphocyte counts, increased the levels of liver function parameters, and induced neurotoxicity. However, when T was added to G + nP, there was no statistically increased impairment compared to G + nP. The triplet significantly increased DNA damage, apoptosis, and tumor necrosis. Furthermore, the triplet further inhibited cell proliferation and reduced stroma density and intratumoral hypoxia. The triplet combination of G + nP + T exhibited superior efficacy but additive toxicity was not evident compared to the G + nP doublet in this study. This study provides a translational rationale for combining G, nP, and T in the clinical setting to assess efficacy and safety. A Phase I clinical trial of the triplet combination is currently underway (NCT02047500).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma Ductal Pancreático/tratamento farmacológico , Hipóxia Celular/efeitos dos fármacos , Nitroimidazóis/administração & dosagem , Mostardas de Fosforamida/administração & dosagem , Albuminas/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Humanos , Camundongos , Paclitaxel/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
12.
Clin Cancer Res ; 21(13): 2984-92, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25805800

RESUMO

PURPOSE: Conventional anticancer treatments are often impaired by the presence of hypoxia. TH-302 selectively targets hypoxic tumor regions, where it is converted into a cytotoxic agent. This study assessed the efficacy of the combination treatment of TH-302 and radiotherapy in two preclinical tumor models. The effect of oxygen modification on the combination treatment was evaluated and the effect of TH-302 on the hypoxic fraction (HF) was monitored using [(18)F]HX4-PET imaging and pimonidazole IHC stainings. EXPERIMENTAL DESIGN: Rhabdomyosarcoma R1 and H460 NSCLC tumor-bearing animals were treated with TH-302 and radiotherapy (8 Gy, single dose). The tumor oxygenation status was altered by exposing animals to carbogen (95% oxygen) and nicotinamide, 21% or 7% oxygen breathing during the course of the treatment. Tumor growth and treatment toxicity were monitored until the tumor reached four times its start volume (T4×SV). RESULTS: Both tumor models showed a growth delay after TH-302 treatment, which further increased when combined with radiotherapy (enhancement ratio rhabdomyosarcoma 1.23; H460 1.49). TH-302 decreases the HF in both models, consistent with its hypoxia-targeting mechanism of action. Treatment efficacy was dependent on tumor oxygenation; increasing the tumor oxygen status abolished the effect of TH-302, whereas enhancing the HF enlarged TH-302's therapeutic effect. An association was observed in rhabdomyosarcoma tumors between the pretreatment HF as measured by [(18)F]HX4-PET imaging and the T4×SV. CONCLUSIONS: The combination of TH-302 and radiotherapy is promising and warrants clinical testing, preferably guided by the companion biomarker [(18)F]HX4 hypoxia PET imaging for patient selection.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Neoplasias Pulmonares/terapia , Nitroimidazóis/farmacologia , Mostardas de Fosforamida/farmacologia , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Hipóxia Celular , Quimiorradioterapia , Imidazóis , Neoplasias Pulmonares/diagnóstico por imagem , Nitroimidazóis/uso terapêutico , Mostardas de Fosforamida/uso terapêutico , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Ratos , Resultado do Tratamento , Triazóis , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Clin Cancer Res ; 18(3): 758-70, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22184053

RESUMO

PURPOSE: Tumor hypoxia underlies treatment failure and yields a more aggressive, invasive, and metastatic cancer phenotype. TH-302 is a 2-nitroimidazole triggered hypoxia-activated prodrug of the cytotoxin bromo-isophosphoramide mustard (Br-IPM). The purpose of this study is to characterize the antitumor activity of TH-302 and investigate its selective targeting of the hypoxic cells in human tumor xenograft models. EXPERIMENTAL DESIGN: Antitumor efficacy was assessed by tumor growth kinetics or by clonogenic survival of isolated cells after tumor excision. Hypoxic fractions (HF) were determined by immunohistochemistry and morphometrics of pimonidazole staining. Tumor hypoxia levels were manipulated by exposing animals to different oxygen concentration breathing conditions. The localization and kinetics of TH-302 induced DNA damage was determined by γH2AX immunohistochemistry. RESULTS: TH-302 antitumor activity was dose-dependent and correlated with total drug exposure. Correlation was found between antitumor activity and tumor HF across 11 xenograft models. Tumor-bearing animals breathing 95% O(2) exhibited attenuated TH-302 efficacy, with whereas those breathing 10% O(2) exhibited enhanced TH-302 efficacy, both compared with air (21% O(2)) breathing. TH-302 treatment resulted in a reduction in the volume of the HF 48 hours after dosing and a corresponding increase in the necrotic fraction. TH-302 induced DNA damage as measured by γH2AX was initially only present in the hypoxic regions and then radiated to the entire tumor in a time-dependent manner, consistent with TH-302 having a "bystander effect." CONCLUSIONS: The results show that TH-302 has broad antitumor activity and selectively targets hypoxic tumor tissues.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Nitroimidazóis/farmacologia , Mostardas de Fosforamida/farmacologia , Pró-Fármacos/farmacologia , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Imuno-Histoquímica , Camundongos , Camundongos SCID , Neoplasias Experimentais/irrigação sanguínea , Neovascularização Patológica , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Cancer Chemother Pharmacol ; 69(6): 1487-98, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22382881

RESUMO

PURPOSE: Subregional hypoxia is a common feature of tumors and is recognized as a limiting factor for the success of radiotherapy and chemotherapy. TH-302, a hypoxia-activated prodrug selectively targeting hypoxic regions of solid tumors, delivers a cytotoxic warhead to the tumor, while maintaining relatively low systemic toxicity. The antitumor activity, different dosing sequences, and dosing regimens of TH-302 in combination with commonly used conventional chemotherapeutics were investigated in human tumor xenograft models. METHODS: Seven chemotherapeutic drugs (docetaxel, cisplatin, pemetrexed, irinotecan, doxorubicin, gemcitabine, and temozolomide) were tested in combination with TH-302 in eleven human xenograft models, including non-small cell lung cancer (NSCLC), colon cancer, prostate cancer, fibrosarcoma, melanoma, and pancreatic cancer. RESULTS: The antitumor activity of docetaxel, cisplatin, pemetrexed, irinotecan, doxorubicin, gemcitabine, and temozolomide was increased when combined with TH-302 in nine out of eleven models tested. Administration of TH-302 2-8 h prior to the other chemotherapeutics yielded superior efficacy versus other sequences tested. Simultaneous administration of TH-302 and chemotherapeutics increased toxicity versus schedules with dosing separations. In a dosing optimization study, TH-302 administered daily at 50 mg/kg intraperitoneally for 5 days per week in the H460 NSCLC model showed the optimal response with minimal toxicity. CONCLUSIONS: TH-302 enhances the activity of a wide range of conventional anti-neoplastic agents in a broad panel of in vivo xenograft models. These data highlight in vivo effects of schedule and order of drug administration in regimen efficacy and toxicity and have relevance to the design of human regimens incorporating TH-302.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Nitroimidazóis/administração & dosagem , Mostardas de Fosforamida/administração & dosagem , Pró-Fármacos/administração & dosagem , Animais , Camptotecina/administração & dosagem , Camptotecina/análogos & derivados , Hipóxia Celular , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Docetaxel , Avaliação Pré-Clínica de Medicamentos , Glutamatos/administração & dosagem , Guanina/administração & dosagem , Guanina/análogos & derivados , Humanos , Irinotecano , Camundongos , Camundongos SCID , Pemetrexede , Taxoides/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
15.
J Med Chem ; 54(6): 1715-23, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21341674

RESUMO

14-Aminocamptothecins were synthesized in good yields by treating camptothecin (1a) and 7-ethylcamptothecin (1b) with 90% fuming nitric acid either neat or in acetic anhydride and then followed by reduction of the resulting 14-nitrocamptothecins (2). 14-Aminocamptothecin (3a) and 7-ethyl-14-aminocamptothecin (3b) demonstrated excellent cytotoxic potency against human tumor cell lines in vitro, and they are not substrates for any of the major clinically relevant efflux pumps (MDR1, MRP1, and BCRP). 3a and 3b showed similar cytotoxicity against human and mouse bone marrow progenitor cells. This is in contrast to many camptothecin analogues, which are substrates for efflux pumps and are dramatically more toxic to human marrow cells relative to murine. 3a and 3b demonstrated significant brain penetration when dosed orally in mice. 3b showed significantly better efficacy relative to topotecan when dosed orally in the three ectopic xenograft models, H460, HT29, and PC-3. On the basis of its favorable in vitro and in vivo profile, 3b warrants future development.


Assuntos
Antineoplásicos/síntese química , Camptotecina/análogos & derivados , Camptotecina/síntese química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Células da Medula Óssea/efeitos dos fármacos , Encéfalo/metabolismo , Camptotecina/farmacocinética , Camptotecina/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Transplante de Neoplasias , Especificidade da Espécie , Estereoisomerismo , Relação Estrutura-Atividade , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA