Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Pestic Biochem Physiol ; 199: 105768, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458677

RESUMO

Plant pathogenic bacteria can cause numerous diseases for higher plants and result in severe reduction of crop yield. Introduction of new bactericides can always effectively control these plant diseases. Benziothiazolinone (BIT) is a novel fungicide registered in China for the control of plant fungal diseases, however, its anti-bacterial activity is not well studied. The results of activity tests showed that BIT exhibited stronger inhibitory activity against bacteria, particularly for Xanthomonas oryzae pv. oryzae (Xoo) (EC50 = 0.17 µg/mL), which was superior than that of the tested fungi in vitro. BIT also exhibited excellent protective and curative activity against rice bacterial leaf blight (BLB) caused by Xoo with the control efficacies of 71.37% and 91.64% at 600 µg/mL, respectively. After treatment with BIT, Xoo cell surface became wrinkled and the cell shape was distorted with extruding cellular content. It was also found that BIT decreased DNA synthesis and affected the biofilm formation and motility of Xoo cells. However, no significant change in the protein content was observed. Moreover, the results of quantitative real-time PCR also showed that expressions of several genes related to DNA synthesis, biofilm formation and motility of Xoo cells were down- or up-regulated, which further proved the anti-bacterial activity of BIT in influencing the biological properties of Xoo. Additionally, BIT also enhanced the activity of phenylalanine ammonia lyase (PAL), a plant defense enzyme. Taken together, benziothiazolinone might be served as an alternative candidate for the control of BLB.


Assuntos
Oryza , Xanthomonas , Antibacterianos/farmacologia , DNA , China , Oryza/metabolismo , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
2.
Pestic Biochem Physiol ; 190: 105319, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36740339

RESUMO

Southern corn leaf blight (SCLB), mainly caused by Bipolaris maydis, is a destructive disease of maize worldwide. Iprodione is a widely used dicarboximide fungicide (DCF); however, its antifungal activity against B. maydis has not been well studied until now. In this study, the sensitivity of 103 B. maydis isolates to iprodione was determined, followed by biochemistry and physiology assays to ascertain the fungicide's effect on the morphology and other biological properties of B. maydis. The results indicated that iprodione exhibited strong inhibitory activity against B. maydis, and the EC50 values in inhibiting mycelial growth ranged from 0.088 to 1.712 µg/mL, with a mean value of 0.685 ± 0.687 µg/mL. After treatment with iprodione, conidial production of B. maydis was decreased significantly, and the mycelia branches increased with obvious shrinkage, distortion and fracture. Moreover, the expression levels of the osmotic pressure-related regulation genes histidine kinase (hk) and Ssk2-type mitogen-activated protein kinase (ssk2) were upregulated, the glycerin content of mycelia increased significantly, the relative conductivity of mycelia increased, and the cell wall membrane integrity was destroyed. The in vivo assay showed that iprodione at 200 µg/mL provided 79.16% protective efficacy and 90.92% curative efficacy, suggesting that the curative effect was better than the protective effect. All these results proved that iprodione exhibited strong inhibitory activity against B. maydis and provided excellent efficacy in controlling SCLB, indicating that iprodione could be an alternative candidate for the control of SCLB in China.


Assuntos
Ascomicetos , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Antifúngicos/farmacologia , Zea mays
3.
Int J Med Sci ; 18(2): 406-418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33390810

RESUMO

Pneumonia caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is spreading globally. There have been strenuous efforts to reveal the mechanisms that the host defends itself against invasion by this virus. The immune system could play a crucial role in virus infection. Dendritic cell as sentinel of the immune system plays an irreplaceable role. Dendritic cells-based therapeutic approach may be a potential strategy for SARS-CoV-2 infection. In this review, the characteristics of coronavirus are described briefly. We focus on the essential functions of dendritic cell in severe SARS-CoV-2 infection. Basis of treatment based dendritic cells to combat coronavirus infections is summarized. Finally, we propose that the combination of DCs based vaccine and other therapy is worth further study.


Assuntos
COVID-19/terapia , Células Dendríticas , Imunoterapia , SARS-CoV-2/fisiologia , COVID-19/imunologia , Ensaios Clínicos como Assunto , Interações Hospedeiro-Patógeno , Humanos
4.
Plant Dis ; 105(11): 3538-3544, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34096770

RESUMO

Pomegranate crown rot caused by Coniella granati is one of the most severe diseases of pomegranate. No fungicides have been registered for controlling this disease in China. Pyraclostrobin, belonging to strobilurin fungicides, has a broad spectrum of activity against many phytopathogens. In this study, based on the mycelial growth and conidial germination inhibition methods, we investigated the biological activity of pyraclostrobin against C. granati in the presence of 50 µg/ml of salicylhydroxamic acid using 80 isolates collected from different orchards in China from 2012 to 2018. The EC50 (50% effective concentration) values ranged from 0.040 to 0.613 µg/ml for mycelial growth and 0.013 to 0.110 µg/ml for conidium germination. Treated with pyraclostrobin, the hyphae morphology changed and conidial production of C. granati decreased significantly. The result of transmission electron microscope showed that treatment of pyraclostrobin could make the cell wall thinner and lead to ruptured cell membrane and formation of intracellular organelle autophagosomes. The pyraclostrobin showed good protective and curative activities against C. granati on detached pomegranate fruits. In field trials, pyraclostrobin showed excellent control efficacy against this disease, in which the treatment of 25% pyraclostrobin EC 1,000× provided 92.25 and 92.58% control efficacy in 2019 and 2020, respectively, significantly higher than that of other treatments. Therefore, pyraclostrobin could be a candidate fungicide for the control of pomegranate crown rot.


Assuntos
Punica granatum , Ascomicetos , Frutas , Doenças das Plantas , Estrobilurinas/farmacologia
5.
Chemistry ; 25(59): 13531-13536, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31393030

RESUMO

Unusual lipid modification of K-Ras makes Ras-directed cancer therapy a challenging task. Aiming to disrupt electrostatic-driven protein-protein interactions (PPIs) of K-Ras with FTase and GGTase I, a series of bivalent dual inhibitors that recognize the active pocket and the common acidic surface of FTase and GGTase I were designed. The structure-activity-relationship study resulted in 8 b, in which a biphenyl-based peptidomimetic FTI-277 was attached to a guanidyl-containing gallate moiety through an alkyl linker. Cell-based evaluation demonstrated that 8 b exhibited substantial inhibition of K-Ras processing without apparent interference with Rap-1A processing. Fluorescent imaging showed that 8 b disrupts localization of K-Ras to the plasma membrane and impairs interaction with c-Raf, whereas only FTI-277 was found to be inactive. These results suggest that targeting the PPI interface of K-Ras may provide an alternative method of inhibiting K-Ras.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Metionina/análogos & derivados , Proteínas Serina-Treonina Quinases/química , Proteínas ras/química , Metionina/química , Metionina/farmacologia , Peptidomiméticos , Prenilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas ras/metabolismo
6.
Biochem Biophys Res Commun ; 457(3): 249-55, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25576362

RESUMO

Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure-activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Animais , Bases de Dados Genéticas , Avaliação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Perfilação da Expressão Gênica/estatística & dados numéricos , Genômica , Coração/efeitos dos fármacos , Humanos , Infecções/etiologia , Modelos Genéticos , Farmacogenética , Relação Quantitativa Estrutura-Atividade , Risco
7.
PLoS Comput Biol ; 9(11): e1003315, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244130

RESUMO

Small drug molecules usually bind to multiple protein targets or even unintended off-targets. Such drug promiscuity has often led to unwanted or unexplained drug reactions, resulting in side effects or drug repositioning opportunities. So it is always an important issue in pharmacology to identify potential drug-target interactions (DTI). However, DTI discovery by experiment remains a challenging task, due to high expense of time and resources. Many computational methods are therefore developed to predict DTI with high throughput biological and clinical data. Here, we initiatively demonstrate that the on-target and off-target effects could be characterized by drug-induced in vitro genomic expression changes, e.g. the data in Connectivity Map (CMap). Thus, unknown ligands of a certain target can be found from the compounds showing high gene-expression similarity to the known ligands. Then to clarify the detailed practice of CMap based DTI prediction, we objectively evaluate how well each target is characterized by CMap. The results suggest that (1) some targets are better characterized than others, so the prediction models specific to these well characterized targets would be more accurate and reliable; (2) in some cases, a family of ligands for the same target tend to interact with common off-targets, which may help increase the efficiency of DTI discovery and explain the mechanisms of complicated drug actions. In the present study, CMap expression similarity is proposed as a novel indicator of drug-target interactions. The detailed strategies of improving data quality by decreasing the batch effect and building prediction models are also effectively established. We believe the success in CMap can be further translated into other public and commercial data of genomic expression, thus increasing research productivity towards valid drug repositioning and minimal side effects.


Assuntos
Reposicionamento de Medicamentos/métodos , Expressão Gênica/efeitos dos fármacos , Genômica/métodos , Farmacologia/métodos , Ligantes , Preparações Farmacêuticas
8.
Anim Biosci ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38575125

RESUMO

Objective: Qianhua Mutton Merino sheep is a new breed of meat wool sheep cultivated independently in China. In 2018, it was approved by the state and brought into the national list of livestock and poultry genetic resources. Qianhua Mutton Merino sheep has the common characteristics of typical meat livestock varieties with rapid growth and development in the early stage and high meat production performance.The objective of this research is to investigate the Genome-wide association of the reproductive traits of Qianhua Mutton Merino sheep. Methods: Qianhua Mutton Merino sheep from the breeding core group were selected as the research object, GWAS was conducted on genes associated with the reproductive traits (singleton or twins, birth weight, age [in days] for sexual maturity, weaning weight, and daily gain from birth to weaning) of Qianhua mutton merino. Results: Our study findings showed that 151 loci of SNPs were detected, among which 3 SNPs related to birth weight and weaning weight occupied a significant portion of the wide genome. The candidate genes preliminarily obtained were SYNE1, SLC12A4, BMP2K, CAMK2D, IMMP2L, DMD, and BCL2. Conclusion: 151 SNP loci were detected for five traits related to reproduction (including singleton or twins, birth weight, age [in days] at sexual maturity, weaning weight, and daily weight gain from birth to weaning). The functions of these candidate genes were mainly enriched in nucleotide metabolism, metal ion binding, oxytocin signaling pathway, and neurotrophin signaling pathway.

9.
Microbiol Spectr ; : e0438222, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877068

RESUMO

Xanthomonas spp. encompass a wide range of phytopathogens that brings great economic losses to various crops. Rational use of pesticides is one of the effective means to control the diseases. Xinjunan (Dioctyldiethylenetriamine) is structurally unrelated to traditional bactericides, and is used to control fungal, bacterial, and viral diseases with their unknown mode of actions. Here, we found that Xinjunan had a specific high toxicity toward Xanthomonas spp., especially to the Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of rice bacterial leaf blight. Transmission electron microscope (TEM) confirmed its bactericidal effect by morphological changes, including cytoplasmic vacuolation and cell wall degradation. DNA synthesis was significantly inhibited, and the inhibitory effect enhanced with the increase of the chemical concentration. However, the synthesis of protein and EPS was not affected. RNA-seq revealed differentially expressed genes (DEGs) particularly enriched in iron uptake, which was subsequently confirmed by siderophore detection, intracellular Fe content and iron-uptake related genes transcriptional level. The laser confocal scanning microscopy and growth curve monitoring of the cell viability in response to different Fe condition proved that the Xinjunan activity relied on the addition of iron. Taken together, we speculated that Xinjunan exerted bactericidal effect by affecting cellular iron metabolism as a novel mode of action. IMPORTANCE Sustainable chemical control for rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae need to be developed due to limited bactericides with high efficiency, low cost, and low toxicity in China. This present study verified a broad-spectrum fungicide named Xinjunan possessing a specific high toxicity to Xanthomonas pathogens, which were further confirmed by affecting the cellular iron metabolism of Xoo as a novel mode of action. These findings will contribute to the application of the compound in the field control of Xanthomonas spp.-caused diseases, and be directive for future development of novel specific drugs for the control of severe bacterial diseases based on this novel mode of action.

10.
Nanoscale Adv ; 5(23): 6572-6581, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38024301

RESUMO

Antimicrobial resistance of existing antibacterial agents has become a pressing issue for human health and demands effective antimicrobials beyond conventional antibacterial mechanisms. Two-dimensional (2D) nanomaterials have attracted considerable interest for this purpose. However, obtaining a high yield of 2D nanomaterials with a designed morphology for effective antibacterial activity remains exceptionally challenging. In this study, an efficient one-step mechanical exfoliation (ECO-ME) method has been developed for rapidly preparing Ti3C2 MXenes with a concentration of up to 30 mg mL-1. This synthetic pathway involving mechanical force endows E-Ti3C2 MXene prepared by the ECO-ME method with numerous irregular sharp edges, resulting in a unique nanoknife effect that can successfully disrupt the bacterial cell wall, demonstrating better antibacterial activity than the MXenes prepared by conventional wet chemical etching methods. Overall, this study provides a simple and effective method for preparing MXenes on a large scale, and its antibacterial effects demonstrate great potential for E-Ti3C2 in environmental and biomedical applications.

11.
J Biol Chem ; 286(11): 9382-92, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21148306

RESUMO

A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/efeitos dos fármacos , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Proteínas de Membrana/metabolismo , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Proteína bcl-X/metabolismo , Animais , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/genética , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/genética , Proteína 11 Semelhante a Bcl-2 , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Citocromos c/genética , Citocromos c/metabolismo , Dipeptídeos/farmacologia , Células HEK293 , Humanos , Proteínas de Membrana/genética , Mitocôndrias , Proteína de Sequência 1 de Leucemia de Células Mieloides , Ftalimidas/farmacologia , Inibidores de Proteases/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética , Proteína de Morte Celular Associada a bcl/genética , Proteína bcl-X/genética
12.
J Agric Food Chem ; 70(31): 9760-9768, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35901518

RESUMO

Rice bakanae disease (RBD) caused by Fusarium fujikuroi is a widespread and destructive disease of rice. It is urgent to introduce a new class of fungicide to manage the fungicidal resistance problem and effectively control the disease. Azoxystrobin (AZO) is an active fungicide with a broad antifungal spectrum, while its activity against F. fujikuroi is not well investigated. In this study, the baseline sensitivity of F. fujikuroi to AZO was established by testing the sensitivity of 100 isolates, collected from Anhui Province of China. The mechanism of resistance to AZO was also investigated. AZO exhibited a strong activity against the 100 F. fujikuroi isolates with EC50 values of 0.822 ± 0.285 and 0.762 ± 0.283 µg/mL for mycelial growth and conidial germination, respectively, and both of the baseline sensitivity curves were validated as unimodal curves. To investigate the resistance mechanism, six mutants with resistance factor (RF) values >50 were generated from wild-type sensitive strains through UV mutagenesis, and sequence analysis showed that mutation G143A in cyt b conferred the resistance to AZO. Mycelial growth, conidia production, pathogenicity, and ATP production were decreased in all six resistant mutants as compared to the parental strains, indicating the fitness penalties in this phenotype of resistance mutation. In addition, the cross-resistance assay showed that there was no cross-resistance between AZO and carbendazim, prochloraz, phenamacril, or pydiflumetofen. AZO can be an efficient candidate to control RBD in China with moderate to low fungal resistance risk, but continuous resistance monitoring should be performed during the application of this fungicide.


Assuntos
Fungicidas Industriais , Fusarium , Oryza , Fungicidas Industriais/farmacologia , Fusarium/genética , Oryza/microbiologia , Pirimidinas , Estrobilurinas/farmacologia
13.
Mol Cancer Ther ; 8(4): 904-13, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19372563

RESUMO

Guided by a combination of nuclear magnetic resonance binding assays and computational docking studies, we synthesized a library of 5,5' substituted Apogossypol derivatives as potent Bcl-XL antagonists. Each compound was subsequently tested for its ability to inhibit Bcl-XL in an in vitro fluorescence polarization competition assay and exert single-agent proapoptotic activity in human cancer cell lines. The most potent compound BI79D10 binds to Bcl-XL, Bcl-2, and Mcl-1 with IC50 values of 190, 360, and 520 nmol/L, respectively, and potently inhibits cell growth in the H460 human lung cancer cell line with an EC50 value of 680 nmol/L, expressing high levels of Bcl-2. BI79D10 also effectively induces apoptosis of the RS11846 human lymphoma cell line in a dose-dependent manner and shows little cytotoxicity against bax-/-bak-/- mouse embryonic fibroblast cells, in which antiapoptotic Bcl-2 family proteins lack a cytoprotective phenotype, implying that BI79D10 has little off-target effects. BI79D10 displays in vivo efficacy in transgenic mice, in which Bcl-2 is overexpressed in splenic B cells. Together with its improved plasma and microsomal stability relative to Apogossypol, BI79D10 represents a lead compound for the development of novel apoptosis-based therapies for cancer.


Assuntos
Gossipol/análogos & derivados , Neoplasias Pulmonares/tratamento farmacológico , Linfoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína 11 Semelhante a Bcl-2 , Sobrevivência Celular/efeitos dos fármacos , Feminino , Polarização de Fluorescência , Gossipol/síntese química , Gossipol/química , Gossipol/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linfoma/metabolismo , Linfoma/patologia , Espectroscopia de Ressonância Magnética , Masculino , Proteínas de Membrana/metabolismo , Membranas Artificiais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Camundongos Transgênicos , Microssomos Hepáticos , Modelos Moleculares , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Células Tumorais Cultivadas , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia , Proteína X Associada a bcl-2/fisiologia , Proteína bcl-X/metabolismo
14.
J Am Chem Soc ; 130(42): 13820-1, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-18811158

RESUMO

Protein-protein interactions have key importance in various biological processes and modulation of particular protein-protein interactions has been shown to have therapeutic effects. However, disrupting or modulating protein-protein interactions with low-molecular-weight compounds is extremely difficult due to the lack of deep binding pockets on protein surfaces. Herein we describe the development of an unprecedented lead synthesis and discovery method that generates only biologically active compounds from a library of reactive fragments. Using the protein Bcl-XL, a central regulator of programmed cell death, we demonstrated that an amidation reaction between thio acids and sulfonyl azides is applicable for Bcl-XL-templated assembly of inhibitory compounds. We have demonstrated for the first time that kinetic target-guided synthesis can be applied not only on enzymatic targets but also for the discovery of small molecules modulating protein-protein interactions.


Assuntos
Azidas/química , Compostos de Sulfidrila/química , Ácidos Sulfínicos/química , Proteína bcl-X/química , Sítios de Ligação , Catálise , Técnicas de Química Combinatória/métodos , Cinética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Isoformas de Proteínas/química , Estereoisomerismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química
15.
Mol Cell Biol ; 24(12): 5565-76, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15169915

RESUMO

Although recent evidence supports a tumor-suppressive role for the GTPase RhoB, little is known about its regulation by signal transduction pathways. Here we demonstrate that Ras downregulates RhoB expression by a phosphatidylinositol 3-kinase (PI3K)- and Akt- but not Mek-dependent mechanism. Furthermore, genetic and pharmacological blockade of PI3K/Akt results in upregulation of RhoB expression. We also provide evidence for the importance of the downregulation of RhoB in oncogenesis by demonstrating that RhoB antagonizes Ras/PI3K/Akt malignancy. Ectopic expression of RhoB, but not the close relative RhoA, inhibits Ras, PI3K, and Akt induction of transformation, migration, and invasion and induces apoptosis and anoikis. Finally, RhoB inhibits melanoma metastasis to the lung in a mouse model. These studies identify suppression of RhoB as a mechanism by which the Ras/PI3K/Akt pathway induces tumor survival, transformation, invasion, and metastasis.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/metabolismo , Proteínas ras/metabolismo , Proteína rhoB de Ligação ao GTP/genética , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Regulação para Baixo , Feminino , Fluoruracila/farmacologia , Genes ras , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma Experimental/genética , Melanoma Experimental/prevenção & controle , Melanoma Experimental/secundário , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Invasividade Neoplásica , Metástase Neoplásica , Fosfatidilinositol 3-Quinases/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt , Transcrição Gênica
16.
Mol Cell Biol ; 24(21): 9527-41, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15485920

RESUMO

The retinoblastoma tumor suppressor protein (Rb) plays a vital role in regulating mammalian cell cycle progression and inactivation of Rb is necessary for entry into S phase. Rb is inactivated by phosphorylation upon growth factor stimulation of quiescent cells, facilitating the transition from G(1) phase to S phase. Although the signaling events after growth factor stimulation have been well characterized, it is not yet clear how these signals contact the cell cycle machinery. We had found previously that growth factor stimulation of quiescent cells lead to the direct binding of Raf-1 kinase to Rb, leading to its inactivation. Here we show that the Rb-Raf-1 interaction occurs prior to the activation of cyclin and/or cyclin-dependent kinases and facilitates normal cell cycle progression. Raf-1-mediated inactivation of Rb is independent of the mitogen-activated protein kinase cascade, as well as cyclin-dependent kinases. Binding of Raf-1 seemed to correlate with the dissociation of the chromatin remodeling protein Brg1 from Rb. Disruption of the Rb-Raf-1 interaction by a nine-amino-acid peptide inhibits Rb phosphorylation, cell proliferation, and vascular endothelial growth factor-mediated capillary tubule formation. Delivery of this peptide by a carrier molecule led to a 79% reduction in tumor volume and a 57% reduction in microvessel formation in nude mice. It appears that Raf-1 links mitogenic signaling to Rb and that disruption of this interaction could aid in controlling proliferative disorders.


Assuntos
Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular , Ciclina D , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , DNA Helicases , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição E2F , Ativação Enzimática , Feminino , Humanos , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Fosforilação , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/genética , Proteína do Retinoblastoma/antagonistas & inibidores , Proteína do Retinoblastoma/genética , Fase S/efeitos dos fármacos , Soro , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/farmacologia
17.
Oncogene ; 24(20): 3236-45, 2005 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-15735720

RESUMO

Constitutive activation of the JAK/STAT3 pathway is a major contributor to oncogenesis. In the present study, structure-activity relationship (SAR) studies with five cucurbitacin (Cuc) analogs, A, B, E, I, and Q, led to the discovery of Cuc Q, which inhibits the activation of STAT3 but not JAK2; Cuc A which inhibits JAK2 but not STAT3 activation; and Cuc B, E, and I, which inhibit the activation of both. Furthermore, these SAR studies demonstrated that conversion of the C3 carbonyl of the cucurbitacins to a hydroxyl results in loss of anti-JAK2 activity, whereas addition of a hydroxyl group to C11 of the cucurbitacins results in loss of anti-STAT3 activity. Cuc Q inhibits selectively the activation of STAT3 and induces apoptosis without inhibition of JAK2, Src, Akt, Erk, or JNK activation. Furthermore, Cuc Q induces apoptosis more potently in human and murine tumors that contain constitutively activated STAT3 (i.e., A549, MDA-MB-435, and v-Src/NIH 3T3) as compared to those that do not (i.e., H-Ras/NIH 3T3, MDA-MB-453, and NIH 3T3 cells). Finally, in a nude mouse tumor xenograft model, Cuc Q, but not Cuc A, suppresses tumor growth indicating that JAK2 inhibition is not sufficient to inhibit tumor growth and suggesting that the ability of Cuc Q to inhibit tumor growth is related to its anti-STAT3 activity. These studies further validate STAT3 as a drug discovery target and provide evidence that pharmacological agents that can selectively reduce the P-STAT3 levels in human cancer cells result in tumor apoptosis and growth inhibition.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Transativadores/antagonistas & inibidores , Transativadores/metabolismo , Triterpenos/farmacologia , Células 3T3 , Animais , Apoptose , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Cucurbitacinas , Humanos , Imuno-Histoquímica , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Concentração Inibidora 50 , Janus Quinase 2 , Camundongos , Camundongos Nus , Modelos Químicos , Células NIH 3T3 , Transplante de Neoplasias , Fosfotirosina/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Tempo , Triterpenos/química , Quinases da Família src/metabolismo
18.
Oncogene ; 24(29): 4701-9, 2005 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-15897913

RESUMO

Angiogenesis depends on vascular endothelial growth factor (VEGF) for initiation and platelet-derived growth factor (PDGF) for maintenance of blood vessels. We have designed a targeted library of compounds from which we identified a novel molecule, GFB-204, that binds PDGF and VEGF, blocks binding of PDGF and VEGF to their receptors (200-500 nM) and subsequently inhibits PDGFR and Flk-1 tyrosine phosphorylation and stimulation of the protein kinases Erk1, Erk2 and Akt and the signal transducer and activator of transcription STAT3. GFB-204 is selective for PDGF and VEGF and does not inhibit EGF, IGF-1 and FGF stimulation of Erk1/2, Akt and STAT3. GFB-204 inhibits endothelial cell migration and capillary network formation in vitro. Finally, treatment of mice with GFB-204 suppresses human tumor growth and angiogenesis. Thus, inhibition of VEGF and PDGF receptor binding with a synthetic molecule results in potent inhibition of angiogenesis and tumorigenesis.


Assuntos
Calixarenos/farmacologia , Transformação Celular Neoplásica , Neovascularização Patológica , Fator de Crescimento Derivado de Plaquetas/fisiologia , Receptores do Fator de Crescimento Derivado de Plaquetas/fisiologia , Receptores de Fatores de Crescimento do Endotélio Vascular/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Movimento Celular , Humanos , Camundongos , Camundongos Nus , Neoplasias Experimentais , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Transplante Heterólogo
19.
Cancer Res ; 63(6): 1270-9, 2003 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-12649187

RESUMO

Constitutively activated, tyrosine-phosphorylated signal transducer and activator of transcription (STAT) 3 plays a pivotal role in human tumor malignancy. To discover disrupters of aberrant STAT3 signaling pathways as novel anticancer drugs, we developed a phosphotyrosine STAT3 cytoblot. Using this high throughput 96-well plate assay, we identified JSI-124 (cucurbitacin I) from the National Cancer Institute Diversity Set. JSI-124 suppressed the levels of phosphotyrosine STAT3 in v-Src-transformed NIH 3T3 cells and human cancer cells potently (IC(50) value of 500 nM in the human lung adenocarcinoma A549) and rapidly (complete inhibition within 1-2 h). The suppression of phosphotyrosine STAT3 levels resulted in the inhibition of STAT3 DNA binding and STAT3-mediated but not serum response element-mediated gene transcription. JSI-124 also decreased the levels of tyrosine-phosphorylated Janus kinase (JAK) but not those of Src. JSI-124 was highly selective for JAK/STAT3 and did not inhibit other oncogenic and tumor survival pathways such as those mediated by Akt, extracellular signal-regulated kinase 1/2, or c-Jun NH(2)-terminal kinase. Finally, JSI-124 (1 mg/kg/day) potently inhibited the growth in nude mice of A549 tumors, v-Src-transformed NIH 3T3 tumors, and the human breast carcinoma MDA-MB-468, all of which express high levels of constitutively activated STAT3, but it did not affect the growth of oncogenic Ras-transformed NIH 3T3 tumors that are STAT3 independent or of the human lung adenocarcinoma Calu-1, which has barely detectable levels of phosphotyrosine STAT3. JSI-124 also inhibited tumor growth and significantly increased survival of immunologically competent mice bearing murine melanoma with constitutively activated STAT3. These results give strong support for pharmacologically targeting the JAK/STAT3 signaling pathway for anticancer drug discovery.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Triterpenos/farmacologia , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Humanos , Janus Quinase 2 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma Experimental/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Fosforilação , Fosfotirosina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Fator de Transcrição STAT3 , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Res ; 63(24): 8922-9, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14695209

RESUMO

Treatment of H-Ras transgenic mice with the geranylgeranyltransferase I (GGTase I) inhibitor GGTI-2154 results not only in halting the growth of aggressive breast tumors but actually in inducing the regression (54 +/- 3%) of all 19 tumors analyzed. The farnesyltransferase (FTase) inhibitor FTI-2148 induced an average of 87 +/- 3% regression in the 13 tumors analyzed. GGTase I, but not FTase, is inhibited in breast tumors after treatment with GGTI-2154, whereas in tumors from mice treated with FTI-2148, only FTase is inhibited. The processing of the geranylgeranylated proteins RhoA, Rap1, and R-Ras, but not the farnesylated proteins H-Ras and HDJ-2, is inhibited in tumors obtained from mice treated with GGTI-2154. GGTI-2154 and FTI-2148 suppress constitutively activated phospho-Erk1/2 and phospho-Akt, induce apoptosis, and induce differentiation toward ductolobular breast epithelium. The data demonstrate that geranylgeranylated proteins are critical in H-Ras oncogenesis in vivo and give strong support for GGTase I as a target for anticancer drug discovery.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Imidazóis/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Animais , Proteínas de Transporte/metabolismo , Diferenciação Celular/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Genes ras/genética , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico/metabolismo , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Vírus do Tumor Mamário do Camundongo/genética , Camundongos , Camundongos Transgênicos , Necrose , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA