Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(15): e2219585120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37018198

RESUMO

Ferroptosis is an iron-dependent oxidative, nonapoptotic form of regulated cell death caused by the destruction of redox homeostasis. Recent studies have uncovered complex cellular networks that regulate ferroptosis. GINS4 is a promoter of eukaryotic G1/S-cell cycle as a regulator of initiation and elongation of DNA replication, but little is known about its impact on ferroptosis. Here, we found that GINS4 was involved in the regulation of ferroptosis in lung adenocarcinoma (LUAD). CRISPR/Cas9-mediated GINS4 KO facilitated ferroptosis. Interestingly, depletion of GINS4 could effectively induce G1, G1/S, S, and G2/M cells to ferroptosis, especially for G2/M cells. Mechanistically, GINS4 suppressed p53 stability through activating Snail that antagonized the acetylation of p53, and p53 lysine residue 351 (K351 for human p53) was the key site for GINS4-suppressed p53-mediated ferroptosis. Together, our data demonstrate that GINS4 is a potential oncogene in LUAD that functions to destabilize p53 and then inhibits ferroptosis, providing a potential therapeutic target for LUAD.


Assuntos
Ferroptose , Humanos , Acetilação , Ciclo Celular , Proteínas Cromossômicas não Histona/metabolismo , Oxirredução , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição da Família Snail/metabolismo
2.
Cancer Cell Int ; 19: 225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31496919

RESUMO

BACKGROUND & AIM: Gastric cancer (GC) is the third-leading cause of cancer-related deaths. We established a prospective database of patients with GC who underwent surgical treatment. In this study, we explored the prognostic significance of the expression of CFP1 and 14-3-3 in gastric cancer, by studying the specimens collected from clinical subjects. MATERIALS & METHODS: Immunohistochemistry was used to detect the expression of CFP1 and 14-3-3 in 84 GC subjects, including 73 patients who have undergone radical gastrectomy and 11 patients who have not undergone radical surgery. Survival analysis was performed by km-plot data. RESULTS: According to the survival analysis, we can see that the survival time of patients with high expression of CFP1 is lower than the patients with low expression in gastric cancer, while the effect of 14-3-3 is just the opposite. The survival time of patients with higher expression of 14-3-3 is also longer. CONCLUSION: The CFP1 and 14-3-3 genes can be used as prognostic markers in patients with GC, but the study is still needed to confirm.

3.
Ecotoxicol Environ Saf ; 161: 662-668, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29935430

RESUMO

Because the extensive use of Cu-based fungicides, the accumulation of Cu in agricultural soil has been widely reported. However, little information is known about the bioavailability of Cu deriving from different fungicides in soil. This paper investigated both the distribution behaviors of Cu from two commonly used fungicides (Bordeaux mixture and copper oxychloride) during the aging process and the toxicological effects of Cu on earthworms. Copper nitrate was selected as a comparison during the aging process. The distribution process of exogenous Cu into different soil fractions involved an initial rapid retention (the first 8 weeks) and a following slow continuous retention. Moreover, Cu mainly moved from exchangeable and carbonate fractions to Fe-Mn oxides-combined fraction during the aging process. The Elovich model fit well with the available Cu aging process, and the transformation rate was in the order of Cu(NO3)2 > Bordeaux mixture > copper oxychloride. On the other hand, the biological responses of earthworms showed that catalase activities and malondialdehyde contents of the copper oxychloride treated earthworms were significantly higher than those of Bordeaux mixture treated earthworms. Also, body Cu loads of earthworms from different Cu compounds spiked soils were in the following order: copper oxychloride > Bordeaux mixture. Thus, the bioavailability of Cu from copper oxychloride in soil was significantly higher than that of Bordeaux mixture, and different Cu compounds should be taken into consideration when studying the bioavailability of Cu-based fungicides in the soil.


Assuntos
Cobre/análise , Fungicidas Industriais/análise , Poluentes do Solo/análise , Animais , Disponibilidade Biológica , Cobre/farmacocinética , Cobre/toxicidade , Fungicidas Industriais/farmacocinética , Fungicidas Industriais/toxicidade , Nitratos/análise , Oligoquetos/efeitos dos fármacos , Oligoquetos/enzimologia , Oligoquetos/metabolismo , Solo/química , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade
4.
J Cancer ; 15(6): 1687-1700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370388

RESUMO

Background: Adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) are two consecutive pathological processes that occur before invasive lung adenocarcinoma (LUAD). However, our understanding of the immune editing patterns during the progression of LUAD remains limited. Furthermore, we know very little about whether alterations in driver genes are involved in forming the tumor microenvironment (TME). Therefore, it is necessary to elucidate the regulatory role of TME in LUAD development from multiple dimensions, including immune cell infiltration, molecular mutation events, and oncogenic signaling pathways. Methods: We collected 145 surgically resected pulmonary nodule specimens, including 28 cases of AIS, 52 cases of MIA, and 65 cases of LUAD. Immunohistochemistry (IHC) was used to detect the expression of immune markers CD3, CD4, CD8, CD68 and programmed death ligand 1 (PD-L1). Genomic data and TMB generated by targeted next-generation sequencing (NGS). Results: LUAD exhibited higher levels of immune cell infiltration, tumor mutation burden (TMB), and activation of oncogenic pathways compared to AIS and MIA. In LUAD, compared to epidermal growth factor receptor (EGFR) single mutation and wild-type (WT) samples, cases with EGFR co-mutations showed a more pronounced rise in the CD4/CD8 ratio and CD68 infiltration. Patients with low-density lipoprotein (LDL) receptor-related protein 1B (LRP1B) mutation have higher TMB and PD-L1 expression. The transition from AIS to LUAD tends to shift the TME towards the PD-L1+CD8+ subtype (adaptive resistance). Progression-associated mutations (PAMs) were enriched in the lymphocyte differentiation pathway and related to exhausted cells' phenotype. Conclusion: Tumor-infiltrating immune cells tend to accumulate as the depth of LUAD invasion increases, but subsequently develop into an immune exhaustion and immune escape state. Mutations in EGFR and LRP1B could potentially establish an immune niche that fosters tumor growth. PAMs in LUAD may accelerate disease progression by promoting T cell differentiation into an exhausted state.

5.
MedComm (2020) ; 5(6): e551, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783893

RESUMO

Cancer is one of the leading causes of death worldwide, and more effective ways of attacking cancer are being sought. Cancer immunotherapy is a new and effective therapeutic method after surgery, radiotherapy, chemotherapy, and targeted therapy. Cancer immunotherapy aims to kill tumor cells by stimulating or rebuilding the body's immune system, with specific efficiency and high safety. However, only few tumor patients respond to immunotherapy and due to the complex and variable characters of cancer immune escape, the behavior and regulatory mechanisms of immune cells need to be deeply explored from more dimensions. Epigenetic modifications, metabolic modulation, and cell-to-cell communication are key factors in immune cell adaptation and response to the complex tumor microenvironment. They collectively determine the state and function of immune cells through modulating gene expression, changing in energy and nutrient demands. In addition, immune cells engage in complex communication networks with other immune components, which are mediated by exosomes, cytokines, and chemokines, and are pivotal in shaping the tumor progression and therapeutic response. Understanding the interactions and combined effects of such multidimensions mechanisms in immune cell modulation is important for revealing the mechanisms of immunotherapy failure and developing new therapeutic targets and strategies.

6.
Thorac Cancer ; 14(18): 1753-1763, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37160413

RESUMO

BACKGROUND: Breast cancer 1 (BRCA1) and breast cancer 2 (BRCA2) tumor suppressor genes play crucial roles in DNA repair and regulation of transcription. Mutations in these genes are closely associated with the occurrence of cancers. However, the mutation status of BRCA gene in central south Chinese lung cancer patients remains unclear, and its expression levels in lung cancer also need to be further explored. METHODS: In this study, we use next-generation sequencing (NGS) technology to analyze the BRCA genes mutations in 462 central south Chinese lung cancer patients. Public databases including cBioportal, Catalogue Of Somatic Mutations In Cancer (COSMIC), The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA) and Expression Profiling Interactive Analysis (GEPIA) are also applied to explore the expression level and mutation status of BRCA in lung cancer patients and their relationships with the prognosis. RESULTS: We found that the mutation rate of BRCA1/2 in central south Chinese lung cancer patients is 4.3% and 6.5% respectively, and missense mutations account for the majority in both BRCA1/2, which are similar to the international status of BRCA1/2 from public databases. In addition, 45 novel mutations of BRCA1/2 in lung cancer are reported in this study. Furthermore, we find that the BRCA2 mutations are negatively correlated with overall survival rate in lung cancer using cBioportal. Last, we demonstrate that both of the mRNA and protein levels of BRCA1/2 are upregulated in lung cancer, and the elevated mRNA expression levels are positively linked with poor prognosis. CONCLUSION: In general, our study better complements knowledge of the BRCA1/2 mutation status in the Chinese lung cancer patients, and firstly reveals the association between BRCA1/2 expression levels and prognosis of lung cancer patients, which may provide great value for the early diagnosis and clinical treatment of lung cancer.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Mutação , Neoplasias Pulmonares/genética , RNA Mensageiro , Predisposição Genética para Doença
7.
J Cancer ; 14(7): 1132-1140, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215453

RESUMO

Objective: An essential component of precision medical treatment for colorectal cancer (CRC) is the use of microsatellite state in combination with polymerase chain reaction (PCR) and immunohistochemistry (IHC) as the primary clinical detection methods. Microsatellite instability-high (MSI-H) or mismatch-repair deficiency (dMMR) accounts for about 15% of all CRC patients. Characterized by a high mutation burden, MSI-H is a predictive biomarker of immune checkpoint inhibitors (ICIs). Misdiagnosis of microsatellite status has been shown to be an important cause of resistance to immune checkpoint inhibitors. Therefore, a rapid and accurate assessment of microsatellite status can be beneficial for precision medicine in CRC. Methods: We evaluated the rate of discordance between PCR and IHC detection of microsatellite status from a cohort of patients that had 855 colorectal cancers. PCR-based microsatellite assay was performed using a set of five monomorphic mononucleotide makers (NR-24, BAT-25, CAT-25, BAT-26, MONO-27) and two polymorphic pentanucleotide (Penta D and Penta E). IHC was used to detect the absence of mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2). The inconsistency rates of the two assays were evaluated. Results: Among 855 patients,15.6% (134 to 855) cases were identified as MSI-H by PCR, whereas 16.9% (145 to 855) cases were identified as dMMR by IHC. There were 45 patients with discordant results between IHC and PCR. Of these, 17 patients were classified as MSI-H/pMMR and 28 patients as MSS/dMMR. When the clinicopathological characteristics of these 45 patients were compared to those of the 855 patients, it was found that more patients were younger than 65 years old (80% to 63%), more were male (73% to 62%), more were located in the right colon (49% to 32%), and more were poorly differentiated (20% to 15%). Conclusion: Our study demonstrated a high concordance between the PCR and IHC results. In order to reduce the ineffective treatment of ICIs due to MSI misdiagnosis, the patient's age, gender, tumor location and degree of differentiation should be included in the clinician's selection of MSI testing in colorectal cancer.

8.
Signal Transduct Target Ther ; 8(1): 48, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725837

RESUMO

In the treatment of most malignancies, radiotherapy plays a significant role. However, the resistance of cancer cells to ionizing radiation (IR) is the main reason for the failure of radiotherapy, which causes tumor recurrence and metastasis. In this study, we confirmed that GPR162, an orphan receptor in the G-protein-coupled receptor family, acted as a novel radiotherapy sensitizer by interacting with the stimulator of interferon genes (STING), which targeted DNA damage responses, activated IRF3, accelerated the activation of type I interferon system, promoted the expression of chemokines including CXCL10 and CXCL4, and inhibited the occurrence and development of tumors. Interestingly, the activation of STING by overexpression of GPR162 was independent of the classical pathway of cGAS. STING inhibitors could resist the antitumor effect of overexpression of GPR162 in IR-induced mouse models. In addition, most solid tumors showed low expression of GPR162. And the higher expression of GPR162 indicated a better prognosis in patients with lung adenocarcinoma, liver cancer, breast cancer, etc. In summary, these results suggested that GPR162 may serve as a potential sensitizer of radiotherapy by promoting radiotherapy-induced STING-IFN production and increasing the expression of chemokines including CXCL10 and CXCL4 in DNA damage response, providing an alternative strategy for improving cancer radiotherapy.


Assuntos
Interferon Tipo I , Neoplasias , Radiossensibilizantes , Camundongos , Animais , Transdução de Sinais/genética
9.
Cell Death Dis ; 14(2): 153, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823149

RESUMO

Lung adenocarcinoma (LUAD) is a fatal threat to human health, while the mechanism remains unclear, and the therapy brings limited therapeutic effects. Transcription factor Homeobox C11 (HOXC11) was previously proved to be related to hind limbs and metanephric development during the embryonic phase, and its role in tumors has been gradually recognized. Our study found that HOXC11 overexpressed in LUAD and was associated with worse overall survival. Moreover, its expression in lung cancer was regulated by IκB kinase α (IKKα), a pivotal kinase in NF-κB signaling, which was related to the ubiquitination of HOXC11. We further proved that HOXC11 could enhance the ability of proliferation, migration, invasion, colony formation, and the progression of the cell cycle in LUAD cells. Meanwhile, it also accelerated the formation of subcutaneous and lung metastases tumors. In contrast, loss of HOXC11 in LUAD cells significantly inhibited these malignant phenotypes. At the same time, HOXC11 regulated the expression of sphingosine kinase 1 (SPHK1) by directly binding to its promoter region. Therefore, we conclude that HOXC11 impacts the development of LUAD and facilitates lung cancer progression by promoting the expression of SPHK1.


Assuntos
Adenocarcinoma de Pulmão , Proteínas de Homeodomínio , Neoplasias Pulmonares , Fosfotransferases (Aceptor do Grupo Álcool) , Humanos , Adenocarcinoma de Pulmão/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Neoplasias Pulmonares/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo
10.
J Agric Food Chem ; 70(38): 12014-12028, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36106619

RESUMO

Our previous study showed that nuciferine (NF) attenuated non-alcoholic fatty liver disease (NAFLD), which is attributed to a high-fat diet (HFD) through reinforcing intestinal barrier functions, regulating lipid metabolism, and improving inflammation. To clarify whether other mechanisms contribute to the anti-NAFLD efficacy of NF, the present study investigated the influence of NF on bile acid (BA) metabolism and gut microbiota in HFD-fed rats. The data demonstrated that NF changed the composition of colonic BA, particularly elevating conjugated BA and non-12OH BA levels. As shown by downregulated protein levels of FXR, FGF15, FGFR4, and ASBT and upregulated protein levels of CYP7A1 and CYP27A1, NF inhibited ileal FXR signaling, promoted BA synthesis, suppressed BA reabsorption, and facilitated fecal BA excretion. NF might affect hepatic FXR signaling, BA conjugation, and enterohepatic circulation by the changed mRNA levels of Fxr, Shp, Baat, Bacs, Bsep, Ntcp, Ibabp, and Ostα/ß. Meanwhile, NF regulated the gut microbiota, characterized by decreased BSH-producing genus, 7α-dehydroxylation genus, and increased taurine metabolism-related genus. Spearman rank correlation analysis implied that Colidextribacter, Adlercreutzia, Family_XIII_AD3011_group, Lachnospiraceae_UCG-010, Eisenbergiella, and UCG-005 were robustly associated with particular BA monomers. In conclusion, our experiment results suggested that NF could exert a mitigating effect on NAFLD via regulating BA metabolism and modulating the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Aporfinas , Ácidos e Sais Biliares/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Mensageiro/metabolismo , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Taurina/metabolismo
11.
Dis Markers ; 2022: 9616764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872695

RESUMO

Background: Gastric cancer (GC), a highly prevalent gastric cancer, has high-risk mortality. Thus, investigating strategies to counteract its growth is important to provide theoretical guidance for its prevention and treatment. It has been pointed out that abnormal expression of microRNAs (miRNAs) serves as noninvasive biomarkers for GC. This present study probed into the role of miR-622 and the NUAK family SNF1-like kinase 1 (NUAK1). Methods: Five mRNA datasets (GSE64916, GSE118916, GSE122401, GSE158662, and GSE159721) and one miRNA dataset (GSE128720) from the Gene Expression of Omnibus (GEO) database were used to analyze the differentially expressed miRNAs and mRNA in GC and noncancer samples. Further, western blot, real-time quantitative PCR (qRT-PCR), reactive oxygen species (ROS) assay kit experiments, and wound healing assay, together with in vivo experiments, were performed. Results: miR-622 was downregulated, and NUAK1 was upregulated in GC, and NUAK1 was a potential target of miR-622. Knocking down NUAK1 decreased GC cell proliferation and migration but increased oxidative stress in vitro and inhibited the development of tumor in vivo, while miR-622 acted to suppress the action of NUAK1 through the miR-622/NUAK1/p-protein kinase B (Akt) axis, thereby inhibiting the occurrence of GC. Conclusion: miR-622 and NUAK1 demonstrated potential for being targets and biomarkers for GC treatment.


Assuntos
MicroRNAs , Neoplasias Gástricas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo , Proteínas Quinases , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Neoplasias Gástricas/patologia
12.
Sci Total Environ ; 834: 155440, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35469870

RESUMO

Aging behaviors of metals in the field differ from those in a controlled laboratory environment. Whether aging conditions influence the fates of metals in soil remains unclear. In this study, distributions of cadmium (Cd) and phosphatase activity were compared in soil aggregates (i.e., >2, 1-2, 0.25-1, and <0.25 mm) along a profile (0-5, 5-10, and 10-15 cm) at the end of 500-day aging experiments under both controlled laboratory and field conditions. Cd concentration in the 0-5 cm layer was lower and Cd concentration in the 5-10 cm layer was higher in field-aged soil compared to laboratory-aged soil. 25.26-35.62% of soil Cd was loaded in >2 mm aggregates of field-aged soils, and 58.41-66.95% was in laboratory-aged soils. Higher loadings of Cd in 0.25-1 and <0.25 mm aggregates were found in field-aged soil. A higher proportion of exchangeable Cd fraction (20.93% of total soil Cd) was found in the 0-5 cm layer of field-aged soil than in laboratory-aged soil (17.63%), while the opposite tendency was found in deeper soil layers. Soil phosphatase activities in field-aged soils were 1.13-1.26 times higher than in laboratory-aged soils. Phosphatase loadings in the >2 mm aggregates were lower and loadings in both the 1-2 and 0.25-1 mm aggregates were higher in field-aged soils than in laboratory-aged soils. Furthermore, correlation analysis and principal component analysis indicated that available Cd fractions accounted for most of the variations in phosphatase activities. In summary, the fates of the exogenous metal Cd differed between field and controlled laboratory conditions. To better understand the behaviors of heavy metals in soil, especially in a seasonal freeze-thaw area, further field studies are needed.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , Metais Pesados/análise , Monoéster Fosfórico Hidrolases , Solo , Poluentes do Solo/análise
13.
Commun Chem ; 5(1): 33, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36697657

RESUMO

Gas hydrates have an important role in environmental and astrochemistry, as well as in energy materials research. Although it is widely accepted that gas accumulation is an important and necessary process during hydrate nucleation, how guest molecules aggregate remains largely unknown. Here, we have performed molecular dynamics simulations to clarify the nucleation path of methane hydrate. We demonstrated that methane gather with a three-body aggregate pattern corresponding to the free energy minimum of three-methane hydrophobic interaction. Methane molecules fluctuate around one methane which later becomes the central gas molecule, and when several methanes move into the region within 0.8 nm of the potential central methane, they act as directional methane molecules. Two neighbor directional methanes and the potential central methane form a three-body aggregate as a regular triangle with a distance of ~6.7 Å which is well within the range of typical methane-methane distances in hydrates or in solution. We further showed that hydrate nucleation and growth is inextricably linked to three-body aggregates. By forming one, two, and three three-body aggregates, the possibility of hydrate nucleation at the aggregate increases from 3/6, 5/6 to 6/6. The results show three-body aggregation of guest molecules is a key step in gas hydrate formation.

14.
Front Mol Neurosci ; 15: 972297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776772

RESUMO

Precocious puberty (PP) is a common condition among children. According to the pathogenesis and clinical manifestations, PP can be divided into central precocious puberty (CPP, gonadotropin dependent), peripheral precocious puberty (PPP, gonadotropin independent), and incomplete precocious puberty (IPP). Identification of the variations in key metabolites involved in CPP and their underlying biological mechanisms has increased the understanding of the pathological processes of this condition. However, little is known about the role of metabolite variations in the drug treatment of CPP. Moreover, it remains unclear whether the understanding of the crucial metabolites and pathways can help predict disease progression after pharmacological therapy of CPP. In this study, systematic metabolomic analysis was used to examine three groups, namely, healthy control (group N, 30 healthy female children), CPP (group S, 31 female children with CPP), and treatment (group R, 29 female children) groups. A total of 14 pathways (the top two pathways were aminoacyl-tRNA biosynthesis and phenylalanine, tyrosine, and tryptophan biosynthesis) were significantly enriched in children with CPP. In addition, two short peptides (His-Arg-Lys-Glu and Lys-Met-His) were found to play a significant role in CPP. Various metabolites associated with different pathways including amino acids, PE [19:1(9Z)0:0], tumonoic acid I, palmitic amide, and linoleic acid-biotin were investigated in the serum of children in all groups. A total of 45 metabolites were found to interact with a chemical drug [a gonadotropin-releasing hormone (GnRH) analog] and a traditional Chinese medicinal formula (DBYW). This study helps to understand metabolic variations in CPP after drug therapy, and further investigation may help develop individualized treatment approaches for CPP in clinical practice.

15.
Onco Targets Ther ; 14: 1517-1529, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33688200

RESUMO

PURPOSE: Gastric adenocarcinoma is one of the most important causes of cancer death and lacks effective treatment. Eighty-four gastric adenocarcinoma tissue samples along with the clinical information were collected. After analyzing the expression of HOXC11 and LSH in the gastric adenocarcinoma tissues, we explored the prognosis of patients and its correlation with clinical characteristics. Both HOXC11 and LSH were over-expressed in MKN-45 cell lines to verify the effect of high expression of HOXC11 and LSH on GAC. METHODS: The expression of HOXC11 and LSH in 84 cases with gastric adenocarcinoma (GAC) was detected via immunohistochemistry, including 17 cases in stage I, 7 cases in stage II, 27 cases in stage III and 33 cases in stage IV. The expression levels of HOXC11 and LSH, and the clinicopathological characteristics of the samples, were also studied. Cell proliferation, migration, cell cycle and apoptosis assays were utilized for demonstrating malignancy of HOXC11 and LSH over-expressed cells. RESULTS: Among 84 GAC pathological samples, 12 high HOXC11 expression, and 72 showed low expression; 54.8% (46/84) high LSH expression, and 45.2% (38/84) exhibited low expression. Survival analysis of the Kaplan-Meier plotter gastric cancer datasets showed that subjects with low expression of HOXC11 and LSH had a longer survival time, with a median survival time of 40.2 and 36.4 months, while the subjects with high HOXC11 and LSH expression were only 20.5 and 10 months, respectively. Meanwhile, HOXC11 and LSH over-expressed cells showed a stronger proliferous and migratory ability, and a sped up cell cycle. CONCLUSION: The high expression level of HOXC11 and LSH both manifested the poor survival prognosis of GAC patients, and more pronounced malignant phenotype in GAC cells indicated that HOXC11 and LSH can be a strong predictive factor of inferior disease-free survival. From this, we can consider that HOXC11 and LSH both have significant status in GAC stage and survival prediction.

16.
Front Pharmacol ; 12: 680081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290609

RESUMO

Metabolism-associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide, and the use of traditional Chinese medicines (TCMs) to treat this disease has attracted increasing attention. The Qing Gan San (QGS) formula comprises Polygonatum sibiricum, the peel of Citrus reticulata Blanco, the leaves of Morus alba L, Cichorium intybus, Glycyrrhiza uralensis Fisch, and Cirsium setosum. The present study aimed to uncover the anti-hyperlipidaemic effects, hepatic fat accumulation-lowering effects and mechanisms of QGS in high-fat diet-induced MAFLD rats. QGS significantly reduced the levels of total cholesterol and triglycerides in both serum and liver tissue and partially protected hepatic function. Additionally, QGS significantly ameliorated hepatic lipid accumulation with histopathology observation, as demonstrated by H&E and oil red O staining. RNA sequencing was used to further investigate the key genes involved in the development and treatment of MAFLD. Hierarchical clustering analysis showed that the gene expression profiles in rats with MAFLD were reversed to normal after QGS treatment. QGS had 222 potential therapeutic targets associated with MAFLD. Enrichment analysis among these targets revealed that QGS affected biological functions/pathways such as the regulation of lipid metabolic processes (GO: 0019216) and the non-alcoholic fatty liver disease pathway (hsa04932), and identified Srebp-1 as a key regulator in the synthesis of cholesterol and triglycerides. Subsequently, both immunofluorescence and Western blot analyses demonstrated that QGS suppressed the transfer of Srebp-1 to the nucleus from the cytoplasm, suggesting that the activation of Srebp-1 was inhibited. Our study reveals the effects and mechanisms of QGS in the treatment of MAFLD and provides insights and prospects to further explore the pathogenesis of MAFLD and TCM therapies.

17.
Sci Total Environ ; 779: 146442, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-33743456

RESUMO

To date, most studies about the aging of metals in soil were based on the controlled laboratory experiments, and few works have attempted to investigate how aging process influences the distribution and bioavailability of metals in soil under the field condition. The purpose of this study was to compare the aging of cadmium (Cd) in soils under the controlled laboratory and the field by monitoring time-dependent soil Cd speciation changes, Cd release kinetics, and Cd bioavailability to plant through the 438-day aging experiments. During the aging process, the proportions of Cd associated with the most weakly bound fraction tended to decrease, with corresponding increases in the more stable binding fractions. After aging, a higher concentration of available Cd was found in the field aging soil (0.74 mg kg-1) than the laboratory aging soil (0.65 mg kg-1). The Elovich equation was the best model to describe the soil available Cd aging process. The constant b in the Elovich equation, which was defined as the transformation rate, was in the order of laboratory aging soil > field aging soil. Moreover, higher Cd release amounts were found for the field aging soil (2.74 mg kg-1) than the laboratory aging soil (2.57 mg kg-1) at the end of aging. Additionally, higher body Cd concentrations were found for the vegetables grown in the field aging soils (1.49 mg kg-1, fresh weight) than those grown in the laboratory aging soils (1.32 mg kg-1, fresh weight). Therefore, this study indicated that the metal distribution process and its bioavailability may be overestimated or underestimated if research data from the laboratory experiments are used to derive soil quality criteria or investigate soil metal bioavailability.


Assuntos
Cádmio , Poluentes do Solo , Disponibilidade Biológica , Cádmio/análise , Laboratórios , Solo , Poluentes do Solo/análise
18.
Environ Sci Pollut Res Int ; 27(10): 10990-10999, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31953763

RESUMO

Seasonal freeze-thaw cycle (FTC) is one of the key processes that affect heavy metal behaviors in soil. However, previous studies are mainly focused on extreme FTC treatments which may exaggerate the real FTC effects in the field. This study aimed to compare the effects of different FTC conditions on the adsorption and desorption behaviors of Cd in the surface black soil. Different minimum freezing temperatures (- 2, - 5, and - 15 °C), FTC rates (1 and 20 °C h-1), freezing lengths (2 and 24 h), and FTC frequencies (1, 3, and 9) were investigated. The thawing temperature was set at 5 °C. The amplitude for the FTC rate, length, and frequency experiments ranged from 5 to - 2 °C. Our results indicated that the adsorption amounts of Cd presented an order of - 2 °C > - 15 °C > - 5 °C and 24 h > 2 h for different FTC amplitude- and freezing length-treated soils, and the adsorption amounts decreased with increasing FTC rate and frequency. Soil maximum adsorption amount of Cd increased with the increases of FTC frequency, freezing length, and FTC rate, while it decreased with the decreases of freezing temperature. Soil Cd desorption ratio decreased with the increases of FTC frequency, freezing length, and TFC rate, and it increased with the increasing freezing temperature. Our results suggested that FTC conditions can significantly influence the adsorption and desorption behaviors of heavy metal in soil.


Assuntos
Poluentes do Solo/análise , Solo , Adsorção , Cádmio , Congelamento
19.
Metabolism ; 83: 167-176, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29378199

RESUMO

BACKGROUND: Women transitioned to postmenopausal status experience a corresponding gain in iron stores. Recently clinical researches have observed increased serum ferritin level in postmenopausal women, and ferritin level was negatively correlated with bone mineral density. PURPOSE: To explore the mechanism of iron-induced osteopenia in mouse model. METHODS: Briefly, in this study, we established an iron accumulation mouse model with ovariectomy. Primary osteoclasts and osteoblasts were extracted for this research. Biomarkers of bone metabolism and cell signaling pathways were measured. RESULTS: We found that bone mass changed later than ferritin and decreased gradually following overiectomy. We also observed higher levels of bone resorption and oxidative stress when iron was administered. When stimulated with iron, primary osteoclasts derived from bone marrow-derived macrophages (BMMs) underwent differentiation and numerous reactive oxygen species (ROS) were generated. Further, we found that iron activated the JNK, ERK and NF-κB signaling pathways in vivo. In vitro, we found that only NF-κB signaling was stimulated by iron and that suppression of this pathway blocked osteoclast differentiation. To determine whether these effects were related to ROS, osteoclasts were treated with H2O2. We found that ROS stimulated osteoclast activity, and that this effect was reversed upon NF-κB suppression. CONCLUSIONS: These data suggest that ROS might be a downstream factor of iron and regulated NF-κB signaling in osteoclasts in mouse model.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Ferro/farmacologia , NF-kappa B/metabolismo , Osteoclastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Osteoclastos/fisiologia , Ovariectomia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA